首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discovery of natural and natural-based compounds has resulted in its application as an alternative to synthetic algicides to control harmful algae in aquatic systems. Of the many natural-product-based algicides, sorgoleone, a natural plant product from Sorghum bicolor root exudates has been investigated for its controlling effect on different algal species and its acute fish toxicity. Growth of the blue green algal species Microcystis aeruginosa Kützing was completely inhibited by the crude methanol extract of sorghum root at 20 μg mL−1. The most noticeable inhibition was observed in the bioassay of n-hexane soluble extract, where 98% growth inhibition occurred in M. aeruginosa at the concentration of 1.25 μg mL−1. Sorgoleone very effectively controlled blue green algae inhibiting 97% of M. aeruginosa at 0.5 μg mL−1 and 99% of Anabaena affinis Lemmermann at 4 μg mL−1. In contrast, inhibition of the green algae species Chlorella vulgaris Beijerinck and Scenedensmus spp. at 16 μg mL−1 sorgoleone was 87 and 68%, respectively. There were no mortalities or adverse effects observed in any of the fish exposed to water control, solvent control, and a nominal concentration of 1 μg mL−1 during the test period. The no observed effect concentration (NOEC) value was 1.5 μg mL−1 for the tested fish (O. latipes). Sorgoleone can be considered as an effective and an ecologically and environmentally sustainable approach to controlling harmful algae.  相似文献   

2.
One of the most promising alternatives to toxic heavy metal-based paints is offered by the development of antifouling coatings in which the active ingredients are compounds naturally occurring in marine organisms and operating as natural antisettlement agents. Sessile marine macroalgae are remarkably free from settlement by fouling organisms. They produce a wide variety of chemically active metabolites in their surroundings, potentially as an aid to protect themselves against other settling organisms. In this study, a dichloromethane extract from the brown seaweed Sargassum muticum was tested in situ and, after 2 months of immersion, showed less fouling organisms on paints in which the extract was included, compared to paints containing only copper after 2 months of immersion. No barnacles or mussels have been observed on the test rack. Identification by NMR and GC/MS of the effective compound revealed the abundance of palmitic acid, a commonly found fatty acid. Pure palmitic acid showed antibacterial activity at 44 μg mL−1, and also inhibited the growth of the diatom Cylindrotheca closterium at low concentration (EC50 = 45.5 μg mL−1), and the germination of Ulva lactuca spores at 3 μg mL−1. No cytotoxicity was highlighted, which is promising in the aim of the development of an environmentally friendly antifouling paint.  相似文献   

3.
Disorders in blood coagulation can lead to an increased risk of bleeding (hemorrhage) or clotting (thrombosis). These illnesses have increased over the last decades and no useful new substances have been discovered to remediate them. In search of new compounds from marine natural resources, macroalgae from the Northwest Mexican Pacific coast were investigated in order to detect anticoagulant activity. Egregia menziesii, Ulva neumatoidea, Porphyra perforata, Silvetia compressa, and Codium fragile were collected from Ensenada coasts. Collected materials were cleaned, dried, milled, and stored until use. Proximate chemical composition and sulfate content were determined in dried powder. Hot and cold aqueous extracts were obtained from the dried algae in order to isolate polysaccharides and similar compounds. Methanol-soluble compounds were separated by means of Soxhlet extraction. Organic and aqueous extracts were screened for anticoagulant activity in both intrinsic and extrinsic pathways of clot formation. Clotting activity was studied by standardized plasma coagulation tests (activated partial thromboplastin time (aPTT) and prothrombin time (PT)). Heparin, a sulfated glycosaminoglycan widely used in anticoagulant therapy, was used as reference. Effects were defined either as aPTT index (Sample aPTT/Control aPTT ratio) or PT index (Sample PT/Control PT ratio). Some of the fractions showed anticoagulant activity over intrinsic pathways, whereas they were found to be coagulants on the extrinsic pathway. The highest aPTT index was 1.8 for U. nematoidea (1 μg mL−1). Hot aqueous extracts from E. menziesii (1 μg mL−1) showed the highest potency, with an aPTT index of 1.4. Sulfate content and anticoagulant activity were not correlated.  相似文献   

4.
The aim of this study was to assess the effect of a commercial green tea extract (TEAVIGO™) on the microbial growth of three probiotic strains (Lactobacillus and Bifidobacterium), as well as three pathogenic bacteria. MIC and co-culture studies were performed. The MICs of the green tea extract against Staphylococcus aureus and Streptococcus pyogenes (100 μg ml−1) were considerably lower than those against the probiotic strains tested (>800 μg ml−1) and Escherichia coli (800 μg ml−1). In co-culture studies, a synergistic effect of the probiotic strains and the green tea extract was observed against both Staph. aureus and Strep. pyogenes. Green tea extract in combination with probiotics significantly reduced the viable count of both pathogens at 4 h and by 24 h had completely abolished the recovery of viable Staph. aureus and Strep. pyogenes. These reductions were more significant than the reductions induced by probiotics or green tea extracts used separately. These results demonstrate the potential for combined therapy using the green tea extract plus probiotics on microbial infections caused by Staph. aureus and Strep. pyogenes. As probiotics and the green tea extract are derived from natural products, treatment with these agents may represent important adjuncts to, or alternatives to, conventional antibiotic therapy.  相似文献   

5.
The effects of an oligogalacturonic acid (OGA) pool on root length of intact alfalfa seedlings (Medicago sativa L.), on extracellular pH and on both extracellular and intracellular O2 dynamics were examined in this study. Lower OGA concentrations (25, 50 and 75 μg mL−1) promoted root length, but 50 μg mL−1 had a stronger effect in promoting growth, while the higher OGA concentration (100 μg mL−1) had no significant effect. Extracellular alkalinization was tested only at concentrations higher than 50 μg mL−1 OGA, showing that the response is determined not only by the specific size of OGA, but also by the concentration of OGA. The promoting effect of OGA on root growth at 25, 50 and 75 μg mL−1 OGA concentrations in alfalfa root appeared to be unrelated to extracellular alkalinization. A possible explanation could be the induction of an O2 burst at non-toxic levels, which could drive directly or indirectly several processes associated with root elongation in 25, 50 and 75 μg mL−1 OGA-treated seedlings. Analyses using confocal microscopy showed that the increase in the O2 generation, mainly in the epidermal cells, induced by 50 μg mL−1 OGA could be related to the promoting effect on root growth. The combination of OGA with DPI allowed us to demonstrate that there are different O2-generating sources in the epidermal cells of the meristematic zone, likely NADPH oxidase and oxidases or oxido-reductase enzymes, insensitive to DPI, that maintain detectable O2 accumulation at 60 and 120 min of treatment. These results suggest that OGA induce an oxidative burst by several O2-generating sources in the active growth zones.  相似文献   

6.
Many algae contain secondary metabolites with the potential to gain importance as pharmaceutically active secretions. Caulerpa racemosa var. cylindracea and Caulerpa prolifera are very abundant on the Mediterranean coastlines. The methanolic extracts of C. racemosa and C. prolifera were tested for inhibitory effects on soybean lipoxygenase. The extract of C. prolifera showed potent inhibitory effect in a lipoxygenase enzyme activity assay. HPLC comparison revealed that C. racemosa extract contained less caulerpenyne, the major secondary metabolite of both algae. In accordance with these findings, purified caulerpenyne inhibited lipoxygenase with an IC50 of 5.1 μM. The enzyme kinetic studies indicated that both K M and V max decreased from 0.041 to 0.019 mM and 312.5 to 151.5 U mL−1 in the presence of 5 μM caulerpenyne, revealing an un-competitive type of inhibition kinetics. The major secondary metabolite of Caulerpa species, caulerpenyne, is thus a novel lipoxygenase inhibitor that can be easily obtained in high quantities from the abundant algae.  相似文献   

7.
8.
The aim of the present work was the investigation of microtubule organization related to developmental processes of Ceratophyllum demersum, a submergent aquatic macrophyte, as affected by microcystin-LR (MCY-LR), a cyanobacterial toxin. We studied the time- and dose-dependent effects of the cyanotoxin in a concentration range of 0.01-20 μg mL−1 (0.01-20.1 μM) at exposure times of 2-16 d. At short term (4 d) of MCY-LR exposure we observed the inhibition of C. demersum shoot tip elongation. This phenomenon was already observed at 0.01 μg mL−1 MCY-LR (reduction of shoot tip length to 56 ± 3.6% of controls) and correlated with the induction of cortical microtubule (CMT) reorientation from transverse to longitudinal known to induce radial expansion of meristematic cells instead of normal elongation. Concomitantly we detected the increase of the percentage of cells in early mitosis in shoot tip meristems, from 1.17 ± 0.2% for controls to 1.93 ± 0.3 at 0.01 μg mL−1 MCY-LR and 6.19 ± 0.5 at 10 μg mL−1 MCY-LR. Cyanotoxin exposure induced the inhibition of general shoot elongation that was more pronounced than inhibition of the increase of leaf whorl number or fresh weight in the treatment period and this was observable at as short as 2-4 d of 2.5 μg mL−1 MCY-LR exposure. This observation further proved that the MCY-LR-induced inhibition of cell elongation is responsible mainly for growth inhibition in C. demersum. Concomitantly with developmental and growth changes MCY-LR decreased protein and chlorophyll content at 16 d of exposure: at 20 μg mL−1 of cyanotoxin, protein content was reduced to 53.3 ± 2.8%, while total chlorophyll content to 46.53 ± 2.7% of controls. This is the first study showing that MCY-LR inhibits the growth of C. demersum through cytoskeletal reorganization. This plant proved to be a powerful model system for toxicological as well as plant cell biology studies.  相似文献   

9.
To investigate the ecological effect of macroalgae on de-eutrophication and depuration of mariculture seawater, the variation of dissolved inorganic nitrogen (DIN) and phosphate (DIP), the amount of Vibrio anguillarum, and total heterotrophic bacteria in Ulva clathrata culture, as well as on the algal surface, were investigated by artificially adding nutrients and V. anguillarum strain 65 from February to April 2006. The results indicated that U. clathrata not only had strong DIN and DIP removal capacities, but also showed a significant inhibitory effect on V. anguillarum, although not reducing the total heterotrophic bacteria. Vibrio anguillarum 65 dropped from 5∼8 × 107 cfu mL−1 to 10 cfu mL−1 (clone-forming units per mL) in 10 g L−1 of fresh U. clathrata culture within 2 days; i.e., almost all of the Vibrios were efficiently eradicated from the algal culture system. Our results also showed that the inhibitory effect of U. clathrata on V. anguillarum strain 65 was both DIN- and DIP-dependent. Addition of DIN and DIP could enhance the inhibitory effects of the algae on the Vibrio, but did not reduce the total heterotrophic bacteria. Further studies showed that the culture suspension in which U. clathrata was pre-cultured for 24 h also had an inhibitory effect on V. anguillarum strain 65. Some unknown chemical substances, either released from U. clathrata or produced by the alga associated microorganisms, inhibited the proliferation of V. anguillarum 65.  相似文献   

10.
The enantiomeric purity of escitalopram oxalate ESC and its “in‐process impurities,” namely, ESC‐N‐oxide, ESC‐citadiol, and R(?)‐enantiomer were studied in drug substance and products using high‐performance liquid chromatography (HPLC)‐UV (Method I), synchronous fluorescence spectroscopy (SFS) (Method IIA), and first derivative SFS (Method IIB). Method I describes as an isocratic HPLC‐UV for the direct resolution and determination of enantiomeric purity of ESC and its “in‐process impurities.” The proposed method involved the use of αl‐acid glycoprotein (AGP) chiral stationary phase. The regression plots revealed good linear relationships of concentration range of 0.25 to 100 and 0.25 to 10 μg mL?1 for ESC and its impurities. The limits of detection and quantifications for ESC were 0.075 and 0.235 μg mL?1, respectively. Method II involves the significant enhancement of the fluorescence intensities of ESC and its impurities through inclusion complexes formation with hydroxyl propyl‐β‐cyclodextrin as a chiral selector in Micliavain buffer. Method IIA describes SFS technique for assay of ESC at 225 nm in presence of its impurities: R(?)‐enantiomer, citadiol, and N‐oxide at ?λ of 100 nm. This method was extended to (Method IIB) to apply first derivative SFS for the simultaneous determination of ESC at 236 nm and its impurities: the R(?)‐enantiomer, citadiol, and N‐oxide at 308, 275, and 280 nm, respectively. Linearity ranges were found to be 0.01 to 1.0 μg mL?1 for ESC and its impurities with lower detection and quantification limits of 0.033/0.011 and 0.038/0.013 μg mL?1 for SFS and first derivative synchronous fluorescence spectra (FDSFS), respectively. The methods were used to investigate the enantiomeric purity of escitalopram.  相似文献   

11.
Two compounds, 2-hydroxymyristic acid (HMA) and cis-9-oleic acid (COA), were isolated from a chloroform extract of the marine bacterium, Shewanella oneidensis SCH0402. In a spectrophotometer-based chemotaxis assay, HMA completely eliminated the optical density (OD) of Alteromonas marina SCH0401 and Bacillus atrophaeus SCH0408, motile, fouling bacteria, at 100 and 1000 μg ml−1, respectively. COA similarly decreased the OD of A. marina and B. atrophaeus by 100% at 1000 μg ml−1. The commercially available, highly toxic anti-fouling compound, tributyltin oxide (TBTO) never reduced the OD of the target bacteria by 100% even at higher concentration. Instead, all the test bacterial cells were killed at higher than 1000 μg ml−1 of concentration. Both HMA and COA inhibited germination of Ulva pertusa spores completely at 10 and 100 μg ml−1, respectively, while TBTO inhibited germination at 0.01 μg ml−1. However, in field assays, both HMA and COA showed anti-fouling activities as potent as TBTO against a wide range of fouling organisms, including micro- and macro-algae, barnacles, and mussels. The average fouling coverage on the surface of the control panel was 93 ± 6% after 1.5 years but no fouling was observed on the surface of the test panel onto which each compound was applied separately. Thus, bacterial repellent compounds can be used as substitutes for potent toxic anti-fouling compounds, resulting in higher standards of environmental safety without loss of anti-fouling performance.  相似文献   

12.
The protozoan parasites Giardia duodenalis and Cryptosporidium parvum are common causes of diarrhoea, worldwide. Effective drug treatment is available for G. duodenalis, but with anecdotal evidence of resistance or reduced compliance. There is no effective specific chemotherapeutic intervention for Cryptosporidium. Recently, there has been renewed interest in the antimicrobial properties of berries and their phenolic compounds but little work has been done on their antiparasitic actions. The effect of various preparations of blueberry (Vaccinium myrtillus) extract on G. duodenalis trophozoites and C. parvum oocysts were investigated. Pressed blueberry extract, a polyphenolic-rich blueberry extract, and a commercially produced blueberry drink (Bouvrage) all demonstrated antigiardial activity. The polyphenol-rich blueberry extract reduced trophozoite viability in a dose dependent manner. At 167 μg ml−1, this extract performed as well as all dilutions of pressed blueberry extract and the Bouvrage beverage (9.6 ± 2.8% live trophozoites remaining after 24 h incubation). The lowest dilution of blueberry extract tested (12.5% v/v) contained >167 μg ml−1 of polyphenolic compounds suggesting that polyphenols are responsible for the reduced survival of G. duodenalis trophozoites. The pressed blueberry extract, Bouvrage beverage and the polyphenolic-rich blueberry extract increased the spontaneous excystation of C. parvum oocysts at 37 °C, compared to controls, but only at a dilution of 50% Bouvrage beverage, equivalent to 213 μg ml−1 gallic acid equivalents in the polyphenolic-rich blueberry extract. Above this level, spontaneous excystation is decreased. We conclude that water soluble extracts of blueberries can kill G. duodenalis trophozoites and modify the morphology of G. duodenalis and C. parvum.  相似文献   

13.
该研究采用稀释涂布法结合形态观察、16S rRNA基因序列分析,对广西北海川蔓藻(Ruppia maritima)内生及根际细菌的物种多样性进行了研究,并采用琼脂扩散法和光度计法分析了其粗提物抑制马尔尼菲青霉菌活性。结果表明:从川蔓藻中分离到可培养内生细菌26株,根际可培养细菌31株。分别将内生细菌归属为10科12属13种,根际分离出细菌归属为9科14属19种,其中5株根际细菌可能为潜在新种。获得8株细菌对马尔尼菲青霉菌有抑制活性,总阳性率为25.0%。其中,菌株BGMRC 2015、BGMRC 2059、BGMRC 2043的粗提物表现出较强的抑制马尔尼菲青霉菌效果,其MIC分别为(1.800±0.045)、(1.881±0.061)、(1.604±0.021)mg·m L~(-1)。川蔓藻中可培养细菌具有较高的物种多样性,蕴藏着丰富的新物种资源,且富含抑菌活性良好的菌株。  相似文献   

14.
The chemical composition of epicuticular waxes of Mandevilla guanabarica and Mandevilla moricandiana was comparatively analyzed by extraction in n-hexane and chloroform. The mean wax content per unit of leaf area in the n-hexane extract was about 13–30 μg cm−2 for M. guanabarica, containing 20–28% n-alkanes and 55–63% triterpenes; for M. mori-candiana, the mean content was 19 μg cm−2, containing 73% n-alkanes and 14% triterpenes. In the chloroform extract, the wax yield was 40–80 μg cm−2 for M. guanabarica, with about 9–11% n-alkanes and 75–82% triterpenes; while for M. moricandiana, the wax yield was 110 μg cm−2, with 52% n-alkanes and 14% triterpenes. The major compounds identified were lupeol, pentacyclic triterpenes of the α- and β-amyrin class, and n-alkanes such as nonacosane, hentriacontane and tritriacontane. These results indicate that the quantitative chemical profiles of epicuticular waxes of M. guanabarica and M. moricandiana are distinct and could be used as an additional feature in taxonomic identification.  相似文献   

15.
The biomass production and biochemical properties of marine and freshwater species of green macroalgae (multicellular algae), cultivated in outdoor conditions, were evaluated to assess the potential conversion into high-energy liquid biofuels, specifically biocrude and biodiesel and the value of these products. Biomass productivities were typically two times higher for marine macroalgae (8.5–11.9 g m−2 d−1, dry weight) than for freshwater macroalgae (3.4–5.1 g m−2 d−1, dry weight). The biochemical compositions of the species were also distinct, with higher ash content (25.5–36.6%) in marine macroalgae and higher calorific value (15.8–16.4 MJ kg−1) in freshwater macroalgae. Lipid content was highest for freshwater Oedogonium and marine Derbesia. Lipids are a critical organic component for biocrude production by hydrothermal liquefaction (HTL) and the theoretical biocrude yield was therefore highest for Oedogonium (17.7%, dry weight) and Derbesia (16.2%, dry weight). Theoretical biocrude yields were also higher than biodiesel yields for all species due to the conversion of the whole organic component of biomass, including the predominant carbohydrate fraction. However, all marine species had higher biomass productivities and therefore had higher projected biocrude productivities than freshwater species, up to 7.1 t of biocrude ha−1 yr−1 for Derbesia. The projected value of the six macroalgae was increased by 45–77% (up to US$7700 ha−1 yr−1) through the extraction of protein prior to the conversion of the residual biomass to biocrude. This study highlights the importance of optimizing biomass productivities for high-energy fuels and targeting additional coproducts to increase value.  相似文献   

16.
In this study, the carotenoids produced by the extremophile microorganisms Halococcus morrhuae, Halobacterium salinarium and Thermus filiformis were separated and identified by high-performance liquid chromatography connected to a diode array detector and a tandem mass spectrometer. The in vitro scavenging capacity of the carotenoid extracts against radical and non-radical species was evaluated. In halophilic microorganisms, the following carotenoids were identified: bacterioruberin, bisanhydrobacterioruberin, trisanhydrobacterioruberin and their derivatives. In the thermophilic bacterium, the carotenoids all-trans-zeaxanthin, zeaxanthin monoglucoside, thermozeaxanthins and thermobiszeaxanthins were identified. The antioxidant capacities of the carotenoid extracts of H. morrhuae (trolox equivalent antioxidant capacity = 5.07 and IC50 = 0.85 μg mL−1) and H. salinarium (trolox equivalent antioxidant capacity = 5.28 and IC50 = 0.84 μg mL−1) were similar and higher than those of the bacterium T. filiformis (trolox equivalent antioxidant capacity = 2.87 and IC50 = 2.41 μg mL−1). This difference is related to the presence of acyclic carotenoids with both large numbers of conjugated double bounds and of hydroxyl groups in the major carotenoid of the halophilic microorganisms.  相似文献   

17.
Effects of carbon concentration and carbon to nitrogen (C:N) ratio on six biocontrol fungal strains are reported in this paper. All fungal strains had extensive growth on the media supplemented with 6–12 g l−1 carbon and C:N ratios from 10:1 to 80:1, and differed in nutrient requirements for sporulation. Except for the two strains of Paecilomyces lilacinus, all selected fungi attained the highest spore yields at a C:N ratio of 160:1 when the carbon concentration was 12 g l−1 for Metarhizium anisopliae SQZ-1-21, 6 g l−1 for M. anisopliae RS-4-1 and Trichoderma viride TV-1, and 8 g l−1 for Lecanicillium lecanii CA-1-G. The optimal conditions for P. lilacinus sporulation were 8 g l−1 carbon with a C:N ratio of 10:1 for M-14 and 12 g l−1 carbon with a C:N ratio of 20:1 for IPC-P, respectively. The results indicated that the influence of carbon concentration and C:N ratio on fungal growth and sporulation is strain dependent; therefore, consideration for the complexity of nutrient requirements is essential for improving yields of fungal biocontrol agents.  相似文献   

18.
19.
Pollution of terrestrial surfaces and aquatic systems by hexavalent chromium, Cr(VI), is a worldwide public health problem. A chromium resistant bacterial isolate identified as Exiguobacterium sp. GS1 by 16S rRNA gene sequencing displayed high rate of removal of Cr(VI) from water. Exiguobacterium sp. GS1 is 99% identical to Exiguobacterium acetylicum. The isolate significantly removed Cr(VI) at both high and low concentrations (1–200 μg mL−1) within 12 h. The Michaelis–Menten K m and V max for Cr(VI) bioremoval were calculated to be 141.92 μg mL−1 and 13.22 μg mL−1 h−1, respectively. Growth of Exiguobacterium sp. GS1 was indifferent at 1–75 μg mL−1 Cr(VI) in 12 h. At initial concentration of 8,000 μg L−1, Exiguobacterium sp. GS1 displayed rapid bioremoval of Cr(VI) with over 50% bioremoval in 3 h and 91% bioremoval in 8 h. Kinetic analysis of Cr(VI) bioremoval rate revealed zero-order in 8 h. Exiguobacterium sp. GS1 grew and significantly reduced Cr(VI) in cultures containing 1–9% salt indicating high salt tolerance. Similarly the isolate substantially reduced Cr(VI) over a wide range of temperature (18–45  °C) and initial pH (6.0–9.0). The T opt and initial pHopt were 35–40  °C and 7–8, respectively. Exiguobacterium sp. GS1 displayed a great potential for bioremediation of Cr(VI) in diverse complex environments.  相似文献   

20.

An efficient micropropagation protocol was developed for Jeffersonia dubia using sucker explants. High frequency of multiple shoot formation was induced when the sucker explants were cultured on Chu’s (N6) medium with different concentrations of thidiazuron (TDZ) plus 0.54 µM α-naphthaleneacetic acid (NAA). The maximum frequency of shoot formation (96.2 %) was obtained on N6 medium with 2.27 µM TDZ plus 0.54 µM NAA. The highest mean number of shoots per explant (13.6) was obtained in temporary immersion system using an immersion frequency of 30 s every 30 min. The highest frequency of rooting (100 %), number of roots per shoot (5.8), and root length (6.3) was observed in half-strength N6 medium supplemented with 2.69 µM NAA. The regenerated plantlets (30 days old) were successfully acclimatized in the greenhouse with 98 % survival rate. The berberine content and cytotoxicity were higher in in vitro-developed calli and shoots than in leaves of field-grown plants. The greatest content of berberine was found in shoots (1381 μg g−1) followed by calli (1092 μg g−1) and leaves of field-grown plants (92 μg g−1). At 1000 μg mL−1 concentration, growth inhibition rate of berberine, callus, shoot, and leaf (in vivo) extracts were 68.4, 57.1, 54.2, and 17.7 %, respectively.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号