首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated four strains of Rhodococcus which specifically degrade estrogens by using enrichment culture of activated sludge from wastewater treatment plants. Strain Y 50158, identified as Rhodococcus zopfii, completely and rapidly degraded 100 mg of 17beta-estradiol, estrone, estriol, and ethinyl estradiol/liter, as demonstrated by thin-layer chromatography and gas chromatography-mass spectrometry analyses. Strains Y 50155, Y 50156, and Y 50157, identified as Rhodococcus equi, showed degradation activities comparable with that of Y 50158. Using the random amplified polymorphism DNA fingerprinting test, these three strains were confirmed to have been derived from different sources. R. zopfii Y 50158, which showed the highest activity among these four strains, revealed that the strain selectively degraded 17beta-estradiol during jar fermentation, even when glucose was used as a readily utilizable carbon source in the culture medium. Measurement of estrogenic activities with human breast cancer-derived MVLN cells showed that these four strains each degraded 100 mg of 17beta-estradiol/liter to 1/100 of the specific activity level after 24 h. It is thus suggested that these strains degrade 17beta-estradiol into substances without estrogenic activity.  相似文献   

2.
Zearalenone (hereafter referred to as ZEA) is a nonsteroidal estrogenic mycotoxin produced by several Fusarium spp. on cereal grains. ZEA is one of the most hazardous natural endocrine disrupting chemicals (EDC) which induces hyper estrogenic responses in mammals. This can result in reproductive disorders in farm animals as well as in humans. Consequently, detoxification strategies for contaminated crops are crucial for food safety. In this study we have developed a bacterial based detoxification system using a non-pathogen Rhodococcus pyridinivorans K408 strain. Following 5 days treatment of ZEA with R. pyridinivorans K408 strain HPLC analyses showed an 87.21% ZEA-degradation efficiency of the bacterial enzyme systems. In another approach, the strain biotransformation ability has also been confirmed by a bioluminescent version of the yeast estrogen screening system (BLYES), which detected an 81.75% of biodegradability of ZEA, in a good agreement with the chemical analyses. Furthermore, the capacity of R. pyridinivorans to eliminate the estrogenic effects of ZEA was tested by using an immature uterotrophic assay. Prepubertal female rats were treated with vehicle (olive oil), 17β-estradiol, ZEA (0.1-1-5-10 mg/kg body weight) and LB broth containing 500 mg/l ZEA that has already been incubated with or without Rhodococcus pyridinivorans K408 strain. Uterine weights were measured and the mRNA level changes relating to apelin, aquaporin 5, complement component 2, and calbindin-3 genes were measured by qRT-PCR. These genes represent the major pathways that are affected by estromimetic compounds. Zearalenone feeding significantly increased the uterus weight in a dose dependent manner and at the same time upregulated complement component 2 and calbindin-3 expression as well as decreased apelin and aquaporin 5 mRNA levels comparable to that seen in 17β-estradiol exposed rats. In contrast, LB broth in which ZEA was incubated with Rhodococcus pyridinivorans K408 prior to the feeding did not display any estrogenic effect neither on uterine weight nor on the expression of estrogen-regulated genes. Consequently, the identification of Rhodococcus pyridinivorans K408 strain in ZEA biodegradation proved to be a very efficient biological tool that is able to eliminate the complete estrogenic effects of ZEA. It is also remarkable that this biotransformation pathway of ZEA did not result in any residual estrogenic effects.  相似文献   

3.
Glabridin is an isoflavan from licorice root, which is a common component of herbal remedies used for treatment of menopausal symptoms. Past studies have shown that glabridin resulted in favorable outcome similar to 17β-estradiol (17β-E2), suggesting a possible role as an estrogen replacement therapy (ERT). This study aims to evaluate the estrogenic effect of glabridin in an in-vitro endometrial cell line -Ishikawa cells via alkaline phosphatase (ALP) assay and ER-α-SRC-1-co-activator assay. Its effect on cell proliferation was also evaluated using Thiazoyl blue tetrazolium bromide (MTT) assay. The results showed that glabridin activated the ER-α-SRC-1-co-activator complex and displayed a dose-dependent increase in estrogenic activity supporting its use as an ERT. However, glabridin also induced an increase in cell proliferation. When glabridin was treated together with 17β-E2, synergistic estrogenic effect was observed with a slight decrease in cell proliferation as compared to treatment by 17β-E2 alone. This suggest that the combination might be better suited for providing high estrogenic effects with lower incidences of endometrial cancer that is associated with 17β-E2.  相似文献   

4.
Two Rhodococcus strains which were isolated from a trichloroethylene (TCE)-degrading bacterial mixture and Rhodococcus rhodochrous ATCC 21197 mineralized vinyl chloride (VC) and TCE. Greater than 99.9% of a 1-mg/liter concentration of VC was degraded by cell suspensions. [1,2-14C]VC was degraded by cell suspensions, with the production of greater than 66% 14CO2 and 20% 14C-aqueous phase products and incorporation of 10% of the 14C into the biomass. Cultures that utilized propane as a substrate were able to mineralize greater than 28% of [1,2-14C]TCE to 14CO2, with approximately 40% appearing in 14C-aqueous phase products and another 10% of 14C incorporated into the biomass. VC degradation was oxygen dependent and occurred at a pH range of 5 to 10 and temperatures of 4 to 35°C. Cell suspensions degraded up to 5 mg of TCE per liter and up to 40 mg of VC per liter. Propane competitively inhibited TCE degradation. Resting cell suspensions also degraded other chlorinated aliphatic hydrocarbons, such as chloroform, 1,1-dichloroethylene, and 1,1,1-trichloroethane. The isolates degraded a mixture of aromatic and chlorinated aliphatic solvents and utilized benzene, toluene, sodium benzoate, naphthalene, biphenyl, and n-alkanes ranging in size from propane to hexadecane as carbon and energy sources. The environmental isolates appeared more catabolically versatile than R. rhodochrous ATCC 21197. The data report that environmental isolates of Rhodococcus species and R. rhodochrous ATCC 21197 have the potential to degrade TCE and VC in addition to a variety of aromatic and chlorinated aliphatic compounds either individually or in mixtures.  相似文献   

5.
6.
7.
Two strains, identified as Rhodococcus wratislaviensis IFP 2016 and Rhodococcus aetherivorans IFP 2017, were isolated from a microbial consortium that degraded 15 petroleum compounds or additives when provided in a mixture containing 16 compounds (benzene, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene, octane, hexadecane, 2,2,4-trimethylpentane [isooctane], cyclohexane, cyclohexanol, naphthalene, methyl tert-butyl ether [MTBE], ethyl tert-butyl ether [ETBE], tert-butyl alcohol [TBA], and 2-ethylhexyl nitrate [2-EHN]). The strains had broad degradation capacities toward the compounds, including the more recalcitrant ones, MTBE, ETBE, isooctane, cyclohexane, and 2-EHN. R. wratislaviensis IFP 2016 degraded and mineralized to different extents 11 of the compounds when provided individually, sometimes requiring 2,2,4,4,6,8,8-heptamethylnonane (HMN) as a cosolvent. R. aetherivorans IFP 2017 degraded a reduced spectrum of substrates. The coculture of the two strains degraded completely 13 compounds, isooctane and 2-EHN were partially degraded (30% and 73%, respectively), and only TBA was not degraded. Significant MTBE and ETBE degradation rates, 14.3 and 116.1 μmol of ether degraded h−1 g−1 (dry weight), respectively, were measured for R. aetherivorans IFP 2017. The presence of benzene, toluene, ethylbenzene, and xylenes (BTEXs) had a detrimental effect on ETBE and MTBE biodegradation, whereas octane had a positive effect on the MTBE biodegradation by R. wratislaviensis IFP 2016. BTEXs had either beneficial or detrimental effects on their own degradation by R. wratislaviensis IFP 2016. Potential genes involved in hydrocarbon degradation in the two strains were identified and partially sequenced.The pollution of soils by petroleum compounds is of great concern mainly because of the solubilities of the different molecules in water, which can endanger aquifers in contact with polluted zones. Petroleum storage facilities are frequently the source of pollution due to leaks and spills during fuel transfer and storage. For example, in the United States in 2007, the EPA indicated that nearly 110,000 old leaks have not yet been cleaned up, and there are an unknown number of petroleum brownfield sites (estimated to be over 200,000) that are predominately old abandoned gas stations (http://www.epa.gov/OUST/pubs/OUST_FY07_Annual_Report-_Final_4-08.pdf). In these locations, the contamination can be generated by diesel oil and/or gasoline leaks from storage tanks, resulting in a complex mixture of compounds with different water solubilities and different biodegradabilities. Among all the phenomena occurring at polluted sites, (i) the interactions between the different compounds can result in enhanced solubility for low-solubility compounds, (ii) the differences in biodegradability levels between the dissolved molecules can lead to dispersion of the poorly biodegradable or nonbiodegradable compounds, and (iii) in the presence of mixtures of compounds, interactions between some of them can lead to detrimental or beneficial effects. For example, methyl tert-butyl ether [MTBE] could enhance the mobility of dissolved benzene, toluene, ethylbenzene, and xylenes [BTEXs] by exerting a cosolvent effect that decreases sorption-related retardation (30). The impact of additive use after petroleum refining to meet specific requirements is a point that deserves more study. MTBE was used extensively in the United States and elsewhere in the world. Several states banned the use of MTBE because of numerous reports of groundwater pollution, but this compound is still used in Europe. Although its use is decreasing, it still remains high, and by the end of 2007, global MTBE production was about 15 million tons. Ethyl tert-butyl ether (ETBE) is used in Europe (France, Spain, Belgium, and Germany), with European production reaching 626,300 tons in 2004 (http://www.agriculture.total.fr). MTBE and ETBE can be added at up to 15% to gasoline in order to reach the octane index requirement; their use was shown to limit noncombusted hydrocarbon release in exhaust pipe fumes. 2-Ethylhexyl nitrate (2-EHN) is the nitric ester of 2-ethyl-1-hexanol, and it is added to diesel formulations at up to 0.4%. The 2-EHN market is about 100,000 tons/year. Alkylates are native components of petroleum products, but in view of the use of ethanol in gasoline, alkylates, like 2,2,4-trimethylpentane (isooctane), are among the few high-octane alternatives that have been proposed, if only the minimal volume of ethanol required to meet oxygenate requirements are used in reformulated gasoline. In this case, other fuel constituents would be needed to make up the resulting 5% gap and the octane shortfall of about 1.5 octane points. Isooctane has an octane rating of 100 and would be attractive for refiners as an octane enhancer since it can be produced by former MTBE production plants (35).Data concerning the use of additives have to be taken into account to assess the impact of petroleum products on polluted sites, such as gas stations, where leaks from different storage tanks can occur, leading to contamination by complex mixtures of petroleum products. The biodegradation of monoaromatic (BTEX) compounds and alkanes has been studied extensively, and both are generally quite biodegradable under aerobic conditions (44, 46). Regarding the biodegradability of MTBE, several microorganisms have been isolated with specific degradation capacities, and some of the genes involved in the biodegradation pathway have been characterized (28). The first-order attenuation rates for MTBE in the plumes in which biodegradation occurred varied from 0.56 to 4.3 year−1, a rate of biodegradation not sufficient to contain the plume (7). In addition, there are numerous sites for which no biodegradation was observed (3, 10), and the presence of BTEXs and MTBE has been shown in the case of Methylibium petroleiphilum PM1 to delay the onset of MTBE biodegradation (13).The behavior of ETBE when spilled in the environment has not been as well studied as that of MTBE, and the extent of contamination has not been documented sufficiently. Similar to that of MTBE, the biodegradation of ETBE is not always observed in microcosms with soils or aquifers derived from contaminated sites (3). Microorganisms able to grow on ETBE have been isolated, and the first monooxygenase system able to degrade ETBE was identified as a cytochrome P450 monooxygenase (encoded by the ethRABCD genes) in Rhodococcus ruber IFP 2001 (6, 21). Highly similar eth gene clusters were also isolated from Rhodococcus zopfii IFP 2005 and Gordonia sp. strain IFP 2009 (4, 16). R. ruber IFP 2001, R. zopfii IFP 2005, and Gordonia sp. strain IFP 2009 were able to grow on ETBE at the expense of the C2 moiety being released by the cleavage of the ether bond with the accumulation of tert-butyl alcohol (TBA) in the growth culture (C. Malandain, F. Fayolle-Guichard, and T. Vogel, submitted for publication). Interestingly, other microorganisms belonging to the genus Rhodococcus were reported to have biodegradation capacities toward ether fuels. Mo et al. (31) isolated a Rhodococcus sp. strain able to degrade MTBE to a low extent; R. aetherivorans, a new species that belongs to MTBE-degrading actinomycetes (20) was characterized, but the enzymatic system responsible for the MTBE oxidation was not elucidated; Rhodococcus sp. strain EH831 was able to degrade MTBE (27).There are few data in the literature regarding the biodegradability of isooctane; Mycobacterium austroafricanum IFP 2173 was the only strain described for its ability to use isooctane as the sole carbon and energy source (42), and more recently, Cho et al. (9) demonstrated the biodegradability of isooctane using previously acclimated biomass. Regarding the biodegradability of 2-EHN, only M. austroafricanum IFP 2173 was recently reported to degrade 2-EHN to 4-ethyldihydrofuran-2(3H)-one (36).The biodegradation of complex mixtures of hydrocarbons has generally been studied only under the highest-performing conditions using different processes (e.g., biofilters) in which the microorganisms and the role played by each of them have not necessarily been elucidated. Individual microorganisms have generally been characterized for their ability to degrade individual petroleum compounds or classes of compounds, i.e., monoaromatics. There is much less work addressing the issue of the biodegradation by individual, characterized microorganisms of complex mixtures generally found in sites polluted by hydrocarbons, even though some bacterial genera (Pseudomonas and Rhodococcus, for example) are known to degrade a wide range of xenobiotics (17, 25, 41). Some authors have investigated the range of biodegradation capacities of given individual strains. Solano-Serena et al. (42) previously isolated M. austroafricanum IFP 2173 from gasoline-contaminated groundwater, and this strain, tested on a mixture of petroleum compounds, showed extended biodegradation capacities toward various hydrocarbons. More recently, Rhodococcus sp. strain EC1 was shown to degrade BTEXs, short-chain alkanes, pyrene, and MTBE (26).The selection and the study of strains with capacities to use a broad spectrum of various hydrocarbons is of great interest because it could facilitate the study of the effect of selective pressure in terms of gene acquisition. From a bacterial consortium, including bacteria from soil at a gas station polluted by leaking tanks and enriched on a mixture of various hydrocarbons, we isolated two strains of Rhodococcus wratislaviensis and Rhodococcus aetherivorans and studied their biodegradation capacities toward hydrocarbons or additives added individually or in mixtures.  相似文献   

8.
Estrogen replacement therapies have been suggested to be beneficial in alleviating symptoms of overactive bladder. However, the precise regulatory mechanisms of estrogen in urinary bladder smooth muscle (UBSM) at the cellular level remain unknown. Large conductance voltage- and Ca2+-activated K+ (BK) channels, which are key regulators of UBSM function, are suggested to be non-genomic targets of estrogens. This study provides an electrophysiological investigation into the role of UBSM BK channels as direct targets for 17β-estradiol, the principle estrogen in human circulation. Single BK channel recordings on inside-out excised membrane patches and perforated whole cell patch-clamp were applied in combination with the BK channel selective inhibitor paxilline to elucidate the mechanism of regulation of BK channel activity by 17β-estradiol in freshly-isolated guinea pig UBSM cells. 17β-Estradiol (100 nM) significantly increased the amplitude of depolarization-induced whole cell steady-state BK currents and the frequency of spontaneous transient BK currents in freshly-isolated UBSM cells. The increase in whole cell BK currents by 17β-estradiol was eliminated upon blocking BK channels with paxilline. 17β-Estradiol (100 nM) significantly increased (~3-fold) the single BK channel open probability, indicating direct 17β-estradiol-BK channel interactions. 17β-Estradiol (100 nM) caused a significant hyperpolarization of the membrane potential of UBSM cells, and this hyperpolarization was reversed by blocking the BK channels with paxilline. 17β-Estradiol (100 nM) had no effects on L-type voltage-gated Ca2+ channel currents recorded under perforated patch-clamp conditions. This study reveals a new regulatory mechanism in the urinary bladder whereby BK channels are directly activated by 17β-estradiol to reduce UBSM cell excitability.  相似文献   

9.
Growth and cesium accumulation characteristics of two cesium-accumulating bacteria isolated from soils were investigated. Rhodococcus erythropolis CS98 and Rhodococcus sp. strain CS402 accumulated high levels of cesium (approximately 690 and 380 μmol/g [dry weight] of cells or 92 and 52 mg/g [dry weight] of cells, respectively) after 24 h of incubation in the presence of 0.5 mM cesium. The optimum pH for cesium uptake by both Rhodococcus strains was 8.5. Rubidium and cesium assumed part of the role of potassium in the growth of both Rhodococcus strains. Potassium and rubidium inhibited cesium accumulation by these Rhodococcus strains. It is likely that both Rhodococcus strains accumulated cesium through a potassium transport system.  相似文献   

10.
Male cystic fibrosis (CF) patients survive longer than females and lung exacerbations in CF females vary during the estrous cycle. Estrogen has been reported to reduce the height of the airway surface liquid (ASL) in female CF bronchial epithelium. Here we investigated the effect of 17β-estradiol on the airway surface liquid height and ion transport in normal (NuLi-1) and CF (CuFi-1) bronchial epithelial monolayers. Live cell imaging using confocal microscopy revealed that airway surface liquid height was significantly higher in the non-CF cells compared to the CF cells. 17β-estradiol (0.1–10 nM) reduced the airway surface liquid height in non-CF and CF cells after 30 min treatment. Treatment with the nuclear-impeded Estrogen Dendrimer Conjugate mimicked the effect of free estrogen by reducing significantly the airway surface liquid height in CF and non-CF cells. Inhibition of chloride transport or basolateral potassium recycling decreased the airway surface liquid height and 17β-estradiol had no additive effect in the presence of these ion transporter inhibitors. 17β-estradiol decreased bumetanide-sensitive transepithelial short-circuit current in non-CF cells and prevented the forskolin-induced increase in ASL height. 17β-estradiol stimulated an amiloride-sensitive transepithelial current and increased ouabain-sensitive basolateral short-circuit current in CF cells. 17β-estradiol increased PKCδ activity in CF and non-CF cells. These results demonstrate that estrogen dehydrates CF and non-CF ASL, and these responses to 17β-estradiol are non-genomic rather than involving the classical nuclear estrogen receptor pathway. 17β-estradiol acts on the airway surface liquid by inhibiting cAMP-mediated chloride secretion in non-CF cells and increasing sodium absorption via the stimulation of PKCδ, ENaC and the Na+/K+ATPase in CF cells.  相似文献   

11.
Incubation of resting cells of Sphingobium indicum B90A, Sphingobium japonicum UT26, and Sphingobium francense Sp+ showed that they were able to transform β- and δ-hexachlorocyclohexane (β- and δ-HCH, respectively), the most recalcitrant hexachlorocyclohexane isomers, to pentachlorocyclohexanols, but only resting cells of strain B90A could further transform the pentachlorocyclohexanol intermediates to the corresponding tetrachlorocyclohexanediols. Moreover, experiments with resting cells of Escherichia coli expressing the LinB proteins of strains B90A, UT26, and Sp+ indicated that LinB was responsible for these transformations. Purified LinB proteins from all three strains also effected the formation of the respective pentachlorocyclohexanols. Although the three LinB enzymes differ only marginally with respect to amino acid sequence, they showed interesting differences with respect to substrate specificity. When LinB from strain B90A was incubated with β- and δ-HCH, the pentachlorocyclohexanol products were further transformed and eventually disappeared from the incubation mixtures. In contrast, the LinB proteins from strains UT26 and Sp+ could not catalyze transformation of the pentachlorocyclohexanols, and these products accumulated in the incubation mixture. A mutant of strain Sp+ lacking linA and linB did not degrade any of the HCH isomers, including β-HCH, and complementation of this mutant by linB from strain B90A restored the ability to degrade β- and δ-HCH.  相似文献   

12.
Rapid non-genomic effects of 17β-estradiol, the principal circulating estrogen, have been observed in a wide variety of cell types. Here we investigate rapid signaling effects of 17β-estradiol in rat hepatocytes. We show that, above a threshold concentration of 1 nm, 17β-estradiol, but not 17α-estradiol, stimulates particulate guanylyl cyclase to elevate cGMP, which through activation and plasma membrane recruitment of protein kinase G isoform Iα, stimulates plasma membrane Ca2+-ATPase-mediated Ca2+ efflux from rat hepatocytes. These effects are extremely rapid in onset and are mimicked by a membrane-impermeant 17β-estradiol-BSA conjugate, suggesting that 17β-estradiol acts at the extracellular face of the plasma membrane. We also show that 17β-estradiol binds specifically to the intact hepatocyte plasma membrane through an interaction that is competed by an excess of atrial natriuretic peptide but also shows many similarities to the pharmacological characteristics of the putative γ-adrenergic receptor. We, therefore, propose that the observed rapid signaling effects of 17β-estradiol are mediated either through the guanylyl cyclase A receptor for atrial natriuretic peptide or through the γ-adrenergic receptor, which is either itself a transmembrane guanylyl cyclase or activates a transmembrane guanylyl cyclase through cross-talk signaling.  相似文献   

13.
The noncellulolytic actinomycete Rhodococcus opacus strain PD630 is the model oleaginous prokaryote with regard to the accumulation and biosynthesis of lipids, which serve as carbon and energy storage compounds and can account for as much as 87% of the dry mass of the cell in this strain. In order to establish cellulose degradation in R. opacus PD630, we engineered strains that episomally expressed six different cellulase genes from Cellulomonas fimi ATCC 484 (cenABC, cex, cbhA) and Thermobifida fusca DSM43792 (cel6A), thereby enabling R. opacus PD630 to degrade cellulosic substrates to cellobiose. Of all the enzymes tested, five exhibited a cellulase activity toward carboxymethyl cellulose (CMC) and/or microcrystalline cellulose (MCC) as high as 0.313 ± 0.01 U · ml−1, but recombinant strains also hydrolyzed cotton, birch cellulose, copy paper, and wheat straw. Cocultivations of recombinant strains expressing different cellulase genes with MCC as the substrate were carried out to identify an appropriate set of cellulases for efficient hydrolysis of cellulose by R. opacus. Based on these experiments, the multicellulase gene expression plasmid pCellulose was constructed, which enabled R. opacus PD630 to hydrolyze as much as 9.3% ± 0.6% (wt/vol) of the cellulose provided. For the direct production of lipids from birch cellulose, a two-step cocultivation experiment was carried out. In the first step, 20% (wt/vol) of the substrate was hydrolyzed by recombinant strains expressing the whole set of cellulase genes. The second step was performed by a recombinant cellobiose-utilizing strain of R. opacus PD630, which accumulated 15.1% (wt/wt) fatty acids from the cellobiose formed in the first step.  相似文献   

14.
15.
Lipophilic compounds of the culture suspension containing Rhodococcus erythropolis DSM43215 had surfactant properties when the bacteria were cultivated with n-alkanes as the sole carbon source. Thirteen main components from a dichloromethane-methanol extract of the R. erythropolis cultures were isolated and characterized to specify quantitatively their surfactant properties, e.g., minimum surface and interfacial tensions and critical micelle concentrations. The interfacial activity of the organic extract was dominated by α,α-trehalose-6,6′-dicorynomycolates which reduced interfacial tension from 44 to 18 mN/m. Phosphatidylethanolamines which were also present in the organic extract reduced the interfacial tension below 1 mN/m. The trehalose corynomycolates had extremely low critical micelle concentrations in high-salinity solutions, and the interfacial properties were stabile in solutions with a wide range of pH and ionic strength.  相似文献   

16.
We reported previously on the function of acyl coenzyme A (acyl-CoA) oxidase isozymes in the yeast Yarrowia lipolytica by investigating strains disrupted in one or several acyl-CoA oxidase-encoding genes (POX1 through POX5) (H. Wang et al., J. Bacteriol. 181:5140–5148, 1999). Here, these mutants were studied for lactone production. Monodisrupted strains produced similar levels of lactone as the wild-type strain (50 mg/liter) except for Δpox3, which produced 220 mg of γ-decalactone per liter after 24 h. The Δpox2 Δpox3 double-disrupted strain, although slightly affected in growth, produced about 150 mg of lactone per liter, indicating that Aox2p was not essential for the biotransformation. The Δpox2 Δpox3 Δpox5 triple-disrupted strain produced and consumed lactone very slowly. On the contrary, the Δpox2 Δpox3 Δpox4 Δpox5 multidisrupted strain did not grow or biotransform methyl ricinoleate into γ-decalactone, demonstrating that Aox4p is essential for the biotransformation.  相似文献   

17.
Rhodococcus rhodochrous PY11 (DSM 101666) is able to use 2-hydroxypyridine as a sole source of carbon and energy. By investigating a gene cluster (hpo) from this bacterium, we were able to reconstruct the catabolic pathway of 2-hydroxypyridine degradation. Here, we report that in Rhodococcus rhodochrous PY11, the initial hydroxylation of 2-hydroxypyridine is catalyzed by a four-component dioxygenase (HpoBCDF). A product of the dioxygenase reaction (3,6-dihydroxy-1,2,3,6-tetrahydropyridin-2-one) is further oxidized by HpoE to 2,3,6-trihydroxypyridine, which spontaneously forms a blue pigment. In addition, we show that the subsequent 2,3,6-trihydroxypyridine ring opening is catalyzed by the hypothetical cyclase HpoH. The final products of 2-hydroxypyridine degradation in Rhodococcus rhodochrous PY11 are ammonium ion and α-ketoglutarate.  相似文献   

18.
Positive allosteric modulators (PAMs) of nicotinic acetylcholine receptors (nAChR) are important therapeutic candidates as well as valuable research tools. We identified a novel type II PAM, (R)-7-bromo-N-(piperidin-3-yl)benzo[b]thiophene-2-carboxamide (Br-PBTC), which both increases activation and reactivates desensitized nAChRs. This compound increases acetylcholine-evoked responses of α2* and α4* nAChRs but is without effect on α3* or α6* nAChRs (* indicates the presence of other nAChR subunits). Br-BPTC acts from the C-terminal extracellular sequences of α4 subunits, which is also a PAM site for steroid hormone estrogens such as 17β-estradiol. Br-PBTC is much more potent than estrogens. Like 17β-estradiol, the non-steroid Br-PBTC only requires one α4 subunit to potentiate nAChR function, and its potentiation is stronger with more α4 subunits. This feature enables Br-BPTC to potentiate activation of (α4β2)(α6β2)β3 but not (α6β2)2β3 nAChRs. Therefore, this compound is potentially useful in vivo for determining functions of different α6* nAChR subtypes. Besides activation, Br-BPTC affects desensitization of nAChRs induced by sustained exposure to agonists. After minutes of exposure to agonists, Br-PBTC reactivated short term desensitized nAChRs that have at least two α4 subunits but not those with only one. Three α4 subunits were required for Br-BPTC to reactivate long term desensitized nAChRs. These data suggest that higher PAM occupancy promotes channel opening more efficiently and overcomes short and long term desensitization. This C-terminal extracellular domain could be a target for developing subtype or state-selective drugs for nAChRs.  相似文献   

19.
Resistance or susceptibility of Red Kidney, Pinto and Small White beans (Phaseolus vulgaris) to the alpha, beta, and gamma strains of Colletotrichum lindemuthianum was either confirmed or established. These fungal strains secrete α-galactosidase, β-galactosidase and β-xylosidase when grown on cell walls isolated from the hypocotyls of any of the above bean varieties. These enzymes effectively degrade cell walls isolated from susceptible 5-day old hypocotyls but degrade only slightly the walls isolated from resistant 18-day old hypocotyls. The amounts of the β-galactosidase and β-xylosidase secreted by the 3 fungal strains are relatively low and are approximately equivalent. The secretion of these 2 enzymes is not dependent upon the bean variety from which the hypocotyl cell walls used as a carbon source were isolated. However, the fungal strains secrete greater amounts of α-galactosidase when grown on hypocotyl cell walls isolated from susceptible plants than when grown on walls from resistant plants. Virulent isolates of the fungus, when grown on hypocotyl cell walls isolated from a susceptible plant, secrete more α-galactosidase than do attenuated (avirulent) isolates of the same fungal strain grown under the same conditions. The α-galactosidase secreted by each of the fungal strains is capable of removing galactose from the hypocotyl cell walls of each bean variety tested. Galactose is removed from the cell walls of each variety at the same rate regardless of whether the cell walls were isolated from a susceptible or resistant plant.  相似文献   

20.
Proteomics and targeted gene disruption were used to investigate the catabolism of benzene, styrene, biphenyl, and ethylbenzene in Rhodococcus jostii RHA1, a well-studied soil bacterium whose potent polychlorinated biphenyl (PCB)-transforming properties are partly due to the presence of the related Bph and Etb pathways. Of 151 identified proteins, 22 Bph/Etb proteins were among the most abundant in biphenyl-, ethylbenzene-, benzene-, and styrene-grown cells. Cells grown on biphenyl, ethylbenzene, or benzene contained both Bph and Etb enzymes and at least two sets of lower Bph pathway enzymes. By contrast, styrene-grown cells contained no Etb enzymes and only one set of lower Bph pathway enzymes. Gene disruption established that biphenyl dioxygenase (BPDO) was essential for growth of RHA1 on benzene or styrene but that ethylbenzene dioxygenase (EBDO) was not required for growth on any of the tested substrates. Moreover, whole-cell assays of the ΔbphAa and etbAa1::cmrA etbAa2::aphII mutants demonstrated that while both dioxygenases preferentially transformed biphenyl, only BPDO transformed styrene. Deletion of pcaL of the β-ketoadipate pathway disrupted growth on benzene but not other substrates. Thus, styrene and benzene are degraded via meta- and ortho-cleavage, respectively. Finally, catalases were more abundant during growth on nonpolar aromatic compounds than on aromatic acids. This suggests that the relaxed specificities of BPDO and EBDO that enable RHA1 to grow on a range of compounds come at the cost of increased uncoupling during the latter's initial transformation. The stress response may augment RHA1's ability to degrade PCBs and other pollutants that induce similar uncoupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号