首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探讨GA_3和Spd对杜鹃(Rhododendron simsii)开花花期和开花品质的影响,研究了外源GA_3和Spd对杜鹃开花期光合特性和抗氧化系统的变化。结果表明,外源GA_3对花期有显著的提前作用,Spd对花期有明显的延迟作用,但两者均使花期延长、花径增大且成花率提高。GA_3和Spd处理提高了花期叶片的光合色素含量和净光合速率(Pn)、气孔导度(Gs)和胞间CO_2浓度(Ci);GA_3处理提高了叶片的蒸腾速率(Tr),而Spd使叶片的Tr下降,两者均有效缓解了末花期叶绿素含量的下降。GA_3和Spd处理显著降低了花瓣MDA含量,提高了抗氧化酶SOD、POD和CAT活性,并减缓了末花期SOD的下降,有效延缓了衰老进程,延长花期。以1 600 mg L~(–1) GA_3和0.10 mmol L~(-1) Spd处理效果较好,能有效提高杜鹃花的观赏品质。  相似文献   

2.
In vitro culture of Chenopodium murale L. (ecotype 197) green and herbicide SAN 9789 - treated "white" plants was established and the effects of benzylaminopurine (BAP), indole-3-acetic acid (IAA) and gibberellic acid (GA3) on growth and flowering were tested. Green plants did not flower on glucose free media, while 17 % of plants flowered on 5 % glucose-containing medium. SAN 9789 (10–5 M) inhibited growth and flowering. BAP and IAA (0.1 – 5 mg dm–3) also inhibited growth and flowering of green and "white" plants. GA3 (10 mg dm–3) stimulated leaf development in green plants, but had no significant effect on "white" plants, and stimulated flowering of green (41 %) and "white" (33 %) plants.  相似文献   

3.
Celery (Apium graveolens L.) plants cv. Jason overwintered in a polythene tunnel flowered earlier and grew taller than similar plants given a 10-week cold-treatment at 5°C prior to transplanting in the same tunnel in mid-February. However, there was no significant difference in the yield of seeds obtained from both treatments, plants grown at a density of 4m-2 yielded less seeds than those at 2m-2, though the yield per unit area was slightly higher from the high density treatment. Treatment with 100 mgl-1 GA3 applied twice just prior to flowering and during anthesis increased flower stalk, flower pedicel and stamen length but delayed flower opening and seed ripening and decreased seed set and seed yield. Treatment with a mixture of 1000 mgl-1 GA4 and GA7 plus 1000 mgl-1 ethephon on three occasions during seed ripening decreased seed yield and reduced seed germination though those seeds capable of germinating were less dormant than seeds from untreated plants. The size distribution of seeds was unaffected by any treatment other than the preseeding spray with GA3 which reduced the percentage of medium-size seeds.  相似文献   

4.
S. C. Fry 《Planta》1979,146(3):343-351
The insoluble cell wall polymers of cultured spinach cells contained esterified ferulic acid at 2–5 mg g-1 dry weight. Gibberellic acid (GA3, 10-11–10-6 M) promoted the expansion of these cells and simultaneoulsy suppressed peroxidase secretion, reduced the activity of cellular phenylanine ammonia-lyase and favoured the accumulation of wall-esterified ferulate and of extracellular soluble phenolic aglycones. When growth was prevented with 0·7 M sorbitol, GA3 still evoked the phenolic and peroxidase effects. It is suggested that peroxidase restricts growth by rigidifying the cell wall in two ways: (a) covalently by catalysing the conversion of feruloyl side-chains into diferuloyl cross-links and (b) non-covalently by catalysing the conversion of soluble phenolics into hydrophobic quinones (or polymers). GA3 is hypothesised to prevent this rigidification by inhibiting peroxidase secretion.Abbreviations A 28 absorbance at 280 nm - a 1cnt 1% absorptivity coefficient - 2,4-D 2,4-dichlorophenoxyacetic acid - EtOAc ethylacetate - GA3 gibberellic acid - mol wt molecular weight - PAL phenylalanine ammonia-lyase - PCV packed cell volume - sh shoulder or inflection - TLC thin-layer chromatography - UV ultra-violet - wavelength - IAA indoleacetic acid  相似文献   

5.
In an early-flowering line of pea (G2) apical senescence occurs only in long days (LD), while growth in short days (SD) is indeterminate. In SD, G2 plants are known to produce a graft-transmissible substance which delays apical senescence in related lines that are photoperiod-insensitive with regard to apical senescence. Gibberellic acid (GA3) applied to the apical bud of G2 plants in LD delayed apical senescence indefinitely, while N6-benzyladenine and -naphthaleneacetic acid were ineffective. Of the gibberellins native to pea, GA9 had no effect whereas GA20 had a moderate senescence-delaying effect. [3H]GA9 metabolism in intact leaves of G2 plants was inhibited by LD and was restored by placing the plants back in SD. Leaves of photoperiod-insensitive lines (I-types) metabolized GA9 readily regardless of photoperiod, but the metabolites differed qualitatively from those in G2 leaves. A polar GA9 metabolite, GAE, was found only in G2 plants in SD. The level of GA-like substances in methanol extracts from G2 plants dropped about 10-fold after the plants were moved from SD to LD; it was restored by transferring the plants back to SD. A polar zone of these GA-like materials co-chromatographed with GAE. It is suggested that a polar gibberellin is synthesized by G2 plants in SD; this gibberellin promotes shoot growth and meristematic activity in the shoot apex, preventing senescence.Abbreviations GA gibberellin - GA3 gibberellic acid - SD short days - LD long days  相似文献   

6.
Prothallia of Lygodium japonicum (Thunb.) Sw. were aseptically cultured under white light in a mineral solution. Solvent fractionation of the resultant culture medium and subsequent preparative thinlayer chromatography yielded a fraction that induced antheridium formation and inhibited archegonium formation. Combined gas chromatography-selected ion monitoring analysis of this fraction confirmed the presence of gibberellin A9 methyl ester (GA9-me) as an antheridiogen and an inhibitor of archegonium formation. Exogenously applied [3H]GA9 was rapidly converted to [3H]GA9-me in the prothallial tissue. Authentic GA9-me was active to 10-10M in antheridium formation and to 10-9M in the inhibition of archegonium formation.Abbreviations GAs gibberellins - GAn gibberellin An - GAn me, gibberellin An methyl ester - TLC thin-layer chromatography - GCSIM Combined gas chromatography-selected ion monitoring  相似文献   

7.
Richard P. Pharis 《Planta》1972,105(3):205-212
Summary The flowering and inflorescence development of Chrysanthemum morifolium cv. Pink Champagne under non-inductive long days was promoted by exogenous application of GA5, GA3, GA4+GA7 or GA9 in combination with the cytokinin, BA. The combination of BA and GA5 was highly effective, BA and GA3 moderately effective. Applications of the GAs alone or BA alone also resulted in some flowering, with GA3 and GA5 being most effective. In general, the effects of GA and BA were synergistic, and the concentration of both growth substances was a limiting factor with regard to the number of plants flowering under long days. Only the concentration of GA was a limiting factor for inflorescence development, however. Simultaneous application of indole-3-acetic acid reduced inflorescence development in most treatments. Development to the stage of anthesis was in no case effected.Abbreviations BA N6-benzyladenine - GA gibberellin - IAA indole-3-acetic acid This research was supported by National Research Council of Canada Grant No. 2585.  相似文献   

8.
Chenopodium rubrum, a short-day plant, and C. murale, a long-day plant, were grown in vitro in continuous darkness. Control C. rubrum plants exposed to continuous darkness for 15 d at cotyledonary phase, did not flower, while 80 % of plants flowered on the medium with 5 % glucose and 10 mg dm−3 GA3. Control C. murale plants exposed to continuous darkness for 10 d at the age of 4th pair of leaves, did not flower, while GA3 (1 – 5 mg dm−3) stimulated flowering up to 65 %. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
This study concerns the effects of four different classes of plant growth regulators on root morphology, patterns of growth and condensed tannin accumulation in transgenic root cultures of Lotus corniculatus L. (Bird's-foot trefoil). Growth of transformed roots in 2,4-dichlorophenoxyacetic acid (2,4-D) resulted in decreased tannin levels relative to controls at concentrations of 10-6 M and above, while gibberellic acid (GA3) inhibited tannin accumulation at concentrations of 10-7 M and above. Benzyladenine (BA) had little effect at low concentrations (10-7 M and below) but resulted in an increase in tannin levels at 10-6 M. Abscisic acid had little effect on levels of condensed tannins at any of the concentrations used. Experiments involving growth regulator addition and medium transfer demonstrated that 2,4-D inhibition of tannin accumulation could be reversed by GA3 and BA, while GA3 downregulation could only be reversed by the addition of 2,4-D. Although 2,4-D inhibited tannin accumulation, addition of 2,4-D to root cultures grown for 14 or 28 days in the absence of plant growth regulators stimulated both growth and tannin biosynthesis. Characteristic alterations in root morphologies accompanied growth regulator-mediated modulation of tannin biosynthesis. Growth in 2,4-D resulted in partially de-differentiated root cultures while growth in GA3 produced roots with an elongated phenotype. Restoration of tannin biosynthesis in 2,4-D-treated roots was accompanied by root re-differentiation and the production of new lateral roots.Abbreviations ABA abscisic acid - BA benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid 3 - FW fresh weight  相似文献   

10.
J. A. D. Zeevaart 《Planta》1985,166(2):276-279
The effects of the new growth retardant tetcyclacis (TCY) on stem growth and endogenous gibberellin (GA) levels were investigated in the long-day rosette plant Agrostemma githago. Application of TCY (10 ml of a 5·10-5M solution daily) to the soil suppressed stem elongation in Agrostemma grown under long-day conditions. A total of 10 g GA1 (1 g applied on alternate days) per plant overcame the growth retardation caused by TCY.Control plants and plants treated with TCY were analyzed for endogenous GAs after exposure to nine long days. The acidic extracts were fractionated by high-performance liquid chromatography. Part of each fraction was tested in the d-5 maize bioassay, while the remainder was analyzed by combined gas chromatography-selected ion monitoring. The bioassay results indicated that the GA content of plants treated with TCY was much lower than that of untreated plants. The data obtained by gas chromatography-selected ion monitoring confirmed that the levels of seven GAs present in Agrostemma were much reduced in TCY-treated plants when compared with the levels in control plants: GA53 (13%), GA44 (0%), GA19 (1%), GA17 (33%), GA20 (15%), GA1 (4%), and epi-GA1 (13%). These results provide evidence that TCY inhibits stem growth in Agrostemma by blocking GA biosynthesis and thus lowering the levels of endogenous GAs.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - HPLC high-performance liquid chromatography - TCY Tetcyclacis (5-[4-chlorophenyl]-3,4,5,9,10-pentaaza-tetracyclo-5,4,1,02,6,08,11-dodeca-3,9-diene)  相似文献   

11.
Podophyllum hexandrum Royle, an important alpine herb, is the source of highly valued podophyllotoxin. The effect of some plant growth substances (GA3, BAP & ABA), uniconazole (an inhibitor of GA biosynthesis), and a combination of GA3 and uniconazole were examined in respect to influence on sprouting in rhizomes of P. hexandrum and on induction of flowering at a lower altitude. Amongst the various chemicals tested, GA3 had a marked effect resulting in uniform sprouting and also induced flowering in about half of the treated rhizomes. While BAP also promoted early sprouting, delayed sprouting was seen in rhizomes treated with ABA. Uniconazole treatment, either alone or with GA3 was found to inhibit flowering and also resulted in reduced plant height. GA3 treatment of rhizomes from plants that was maintained for up to 30 months at a lower altitude also induced flowering thus replacing the normal chilling requirement of plants. These results suggest that treatment of GA3 could be effectively used for inducing uniform sprouting and flowering in rhizomes of P. hexandrum grown at lower altitudes.  相似文献   

12.
The influence of BA, GA3 and IAA applied successively onflower bud formation in shoot apices of Pharbitis nil hasbeen investigated. The shoot apices were isolated from seedlings cultivatedunder non-inductive continuous light and from seedlings exposed to asubinductive (12 h) dark period. BA and GA3 introducedsuccessively into culture medium replaced the inductive night, causing theflowering of plantlets in completely non-inductive continuous light (optimalconcentration of BA – 10–7–10–6mol dm–3, GA3 –10–7–10–6 moldm–3) and stimulated this process under thesubthresholdinduction. These hormones applied in reverse sequence (in the first placeGA3, then BA) did not affect flowering of explants. IAA nullifiedthestimulating effect of BA and GA3. The influence of phytohormones onflowering may result from the change of growth correlations within the shootapical meristem.  相似文献   

13.
Hormonal control of flower induction and inflorescence development in vitro was investigated in Spathiphyllum. The effects of gibberellic acid (GA3) and sucrose on inflorescence development were studied in plantlets regenerated in tissue culture. GA3 was mandatory for the shift from the vegetative to the reproductive stage. The effect of sucrose concentration on inflorescence bud development was studied in plantlets cultured in MS medium supplemented with 10 mg l−1 GA3. Sucrose concentration at 3 or 6% induced inflorescence development in, respectively, 83–85% of the plantlets. The effect of GA3 and sucrose on inflorescence differentiation and development were also recorded in liquid culture using air-lift bioreactor. The best response was found in the same medium which was standardized as an optimum for solid culture, but the results were better than solid culture. In order to study the relationship between glutathione (GSH) and flowering, we also measured the oxidized and reduced GSH content in leaves throughout the culture period on 2 weeks interval. The GSH accumulation was more after 4 weeks until 6 weeks in GA3 treated plantlets. Similarly, glutathione reductase which is involved in the recycling of reduced GSH providing a constant intracellular level of GSH, was also higher in GA3 treated plantlets. The transient increase in GSH contents also correlated with the changes in measured γ-glutamylcysteine synthetase (γ-ECS) activity over the same period. The antioxidant enzyme activity in GA3 treated plantlets also suggests that the plants suffered increased oxidative stress during the period of GA3 treatment which subsequently increases GSH synthesis through activation of γ-ECS and this promotes flowering by increasing endogenous GSH.  相似文献   

14.
Applications of the growth promotive gibberellins (GAs) GA4 and 2,2-dimethyl GA4, and of C-16,17 endo-dihydro GA5, which is known to promote flowering while inhibiting stem growth in the long-day grass Lolium temulentum, were made to micropropagated plants of Metrosideros collina cv. Tahiti, a highly ornamental cultivar with an intermittent flowering pattern. Gibberellin A4 and 2,2-dimethyl GA4 stimulated vegetative growth both in elongating shoots, and internodes of shoots developing from buds that were quiescent at the time of GA application. Abscission of the apices of expanding shoots, a feature of mature Metrosideros plants, was inhibited by these GAs, the rejuvenation of micropropagated plantlets being enhanced. However, C-16,17 endo-dihydro GA5 differed from GA4 and 2,2-dimethyl GA4 by having no promotive effects on vegetative growth, and no inhibition of apical abscission. Notwithstanding this contrasting effect on vegetative growth, high doses of GA4 or C-16,17 endo-dihydro GA5 similarly reduced flowering on shoots to which either GA was applied. Reduced flowering in response to applied GAs is common in many woody angiosperms, and in this instance was probably the combined result of abortion of developing floral structures in quiescent buds, and a preferential inhibition of bud break for floral buds relative to vegetative buds, particularly by GA4. Finally, both C-16,17 endo-dihydro GA5 and GA4 strongly inhibited bud break in this woody angiosperm, although GA4 could initially stimulate bud break when applied to vegetative buds close to the expansion stage. The above findings, in toto, highlight the sensitivity of Metrosideros to both classes of GA in a variety of growth and development processes.  相似文献   

15.
Combinations of far-red light (FR) (4 min) and gibberellic acid (GA3), given at the beginning of a daily 12-h dark period in a growth room, were used to study floral induction in four maturity genotypes of the milo group of sorghum (Sorghum bicolor (L.) Moench). The 12-h dark period without GA3 application or FR induced flowering in only the early genotype; FR hastened initiation in the early genotype, while GA3 hastened floral initiation in the two intermidiate-flowering genotypes. GA3 and FR together had a strong synergistic effect, hastening floral initiation by 30 to more than 80 d in the early and intermediate genotypes. Red light (R) did not hasten flowering; FR preceded by R gave the same effect as FR alone. GA3 promoted stem elongation equally whether floral initiation occurred or not; thus, its effect on stem elongation was independent of floral initiation. The capacity of GA3 to induce flowering in sorghum, a short-day plant, seems to be enhanced by phytochrome being in the PR form at the beginning of the night when GA3 was applied.Abbreviations FR far-red light - GA(s) gibberellin(s) - GA3 gibberellic acid - R red light  相似文献   

16.
In vitro culture of long-day plant Chenopodium murale L was established. The effects of photoperiod, glucose and gibberellic acid (GA3) on flowering and growth in vitro were investigated. Oscillatory changes of photoperiodic sensitivity were noticeable with regard to plant age. The plants induced at the phase of the 1st and the 3rd pair of leaves flowered to higher degree than those induced at the phase of 2nd pair. Plants induced at the phase of the 1st pair of leaves flowered to 17 % on 5 % glucose-containing medium and the addition of 5 mg dm-3 GA3 resulted in maximum flowering (43 %). Neither glucose nor GA3 were able to compensate for photoperiodic requirements for flowering. Hypocotyl growth was decreased and the 1st internode elongation and development of leaves were increased due to inductive photoperiodic conditions, as compared to non-inductive ones.  相似文献   

17.
Endopeptidase activity in cotyledons of 5-day seedlings of Pisum sativum increased rapidly during germination. However, the increase of the activity in detached cotyledons was depressed. We examined whether a growth regulator can be substituted for the embryonic axis on the development of endopeptidase activity. As monitored by an assay with azoalbumin, the development of endopeptidase activity from crude extracts of detached cotyledons appeared to be slightly accelerated by incubation with 10–5 M GA3. However, the pattern after gelatin-polyacrylamide gel suggested that the activity induced in detached cotyledons during a 5-d incubation at 10–7 M GA3 was the same as that in attached ones during germination for 5 days and an even greater increase in activity was obtained with 10–5 M GA3. These results suggest that GA3 from the embryonic axis induces endopeptidase activity in attached cotyledons at the first stage of germination.Abbreviations ABA abscisic acid - IAA indole-3-acetic acid - GA gibberellic acid  相似文献   

18.
The white-light-(WL) induced enlargement of dicotyledonous leaf cells is known to occur via an acid-growth mechanism; i.e., WL causes leaf cells to excrete protons which lead to an increase in wall extensibility and thus cell enlargement. Gibberellic acid (GA3) and N6-benzyladenine (BA) also induce leaf cell enlargement. To see if they also act via acid-induced cell wall loosening, a comparison has been made of WL-, GA3-and BA-induced growth of strips, taken from primary leaves of bean (Phaseolus vulgaris L.) plants raised in continuous red light for 10 d. White light, GA3 and BA all increased wall extensibility as measured by the Instron technique, and this change preceded the increase in growth rate. However, whereas WL induced significant proton excretion, neither GA3 nor BA caused any acidification of the apoplast. Furthermore, neutral buffers, which effectively inhibited the growth induced by WL, were without effect on growth promoted by either GA3 or BA. These results indicate that while WL, GA3 and BA all initiate growth in bean leaves by altering cell-wall properties, GA3 and BA do so through some wall loosening mechanism other than wall acidification. Neither gibberellin nor cytokinin is likely to play a major role in light-induced cell enlargement of dicotyledonous leaves.Abbreviations BA No-benzyladenine - FC fusicoccin - GA3 gibberellic acid - RL red light - SK medium 10 mM sucrose+10mM KCl - WL white light  相似文献   

19.
The major endogenous gibberellin (GA) in shoots, roots and ears of the rice plant, Oryza sativa L. japonica cv. Nihonbare, was identified as GA19 by combined gas liquid chromatography-mass spectrometry (GC-MS) and GC-selected ion current monitoring (GC-SICM). Another GA present in these tissues in small quantity was tentatively identified as GA1 by GC-SICM, and GA4 may be present in the seeds (kernels) of 3rd-leaf-stage seedlings. Using GC-SICM, the GA19 content was quantified throughout the life cycle of rice plants. It was found to reach high levels (ca. 10–15 g/kg fresh weight) in 3rd-leaf seedlings, at panicle initiation (shoots), and during heading and anthesis (ears). The levels of GA19 in Oryza sativa indica cv. T-136 underwent changes closely similar to those found in Nihonbare. The growth-promoting activity in rice of exogenous GA19 is generally considerably less than that of GA1. It therefore seems possible that GA19 functions as a pool GA. The level of active GAs such as GA1 may be regulated by the rate of biosynthesis of GA19 or its metabolic conversions.Abbreviations GA(s) gibberellin(s) - GAn gibberellin An - GAn-MeTMS trimethylsilyl ether of GAn methyl ester - GC-MS combined gas liquid chromatography-mass spectrometry - GC-SICM combined gas liquid chromatography-selected ion current monitoring - TLC thin-layer chromatography  相似文献   

20.
Seed maturation of Pisum sativum cv. Progress No. 9 proceeds more slowly in winter than in summer even when the parent plants are grown in greenhouse conditions with light-and heat-supplementation. For parent plants grown under summer and winter conditions the metabolism of [3H]GA9 in cultured seeds is qualitatively different in seeds of equivalent age and qualitatively the same in seeds of equivalent weight. 13-Hydroxylation of [3H]GA9[3H]GA20 is restricted to early stages of seed development. 2-Hydroxylation of [3H]GA92-OH-[3H]GA9 has only been observed at a stage of development after endogenous GA9 has accumulated. 2-OH-GA9 has been shown to be endogenous to pea and is named GA51. H2-GA31 and its conjugate have not been shown to be present in pea and may be induced metabolites of [3H]GA9. The metabolism of GA20GA29 is used to illustrate a technique of feeding [2H][3H]GAs in order to distinguish a metabolite from the same endogenous compound. The in vitro conversion of [3H]GA20[3H]GA29, and the virtual non-metabolism of [3H]GA29 have been confirmed for seeds in intact fruits. These results are discussed in relation to the apparent absence of conjugated GAs in mature pea seeds.Abbreviations GAn gibberellin An - GC gas chromatography - GC-MS combined gas chromatography-mass spectrometry - GC-RC combined gas chromatography-radio counting - Me methyl ester - RT etention time - SICM selected ion current monitoring - TLC thin layer chromatography - TMS trimethyl silyl ether The author is née Frydman  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号