首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
From 10 trypanosomatids genera six comprise monogenetic parasites of insects and for the rest of four genera insects may serve as vectors. The invertebrate host is an essential element of trypanosomatids life cycle, but from more than 900 recognised vertebrate hosts only about 500 species of insects have been discovered to be the hosts of homoxenous trypanosomatids. Nothing or very little is known about insect trypanosomatids in many extensive areas such as South East Asia, Australia, Japan and some others. Each new region explored brings many new findings. Recently flagellates were found in new insect species and families. The border of parasites distribution was expanded till Central Asia, Far East and North over the Polar Circle. As paleogeographical events are now under contemplating in trypanosomatids phylogeny researches so northern insect trypanosomatids may attract some attention as the elements of postglacial fauna which is definitely young. Very broad host specificity of insect trypanosomatids and high probability to isolate non-specific parasite show causes that only the investigation of a culture may solve the question 'what parasite was really isolated?'. Examination of cell morphotypes in the host has clearly demonstrated that they are not sufficient for classification and may lead us to be mistaken. The number of insect trypanosomatid cultures is inadequate for characterisation of the diversity of insects trypanosomatids. Trypanosoma is actually the only trypanosomatid genus which is out of questions. Insect trypanosomatids comprise the most diversified part of trypanosomatids evolutionary tree. Recent ssrRNA phylogenetic analysis and morphological data show that three insect isolates represent new lineages on trypanosomatid evolutionary tree, as well as dendrograms derived from PCR data demonstrated some new groups of isolates. Therefore, the more insect trypanosomatids are involved in laboratory investigations--the more new clusters or/and new lineages are appearing on the tree.  相似文献   

2.
Trypanosomatid parasites are disease agents with an extraordinarily broad host range including humans, livestock and plants. Recent work has revealed that trypanosomatids harbour numerous genes sharing apparent common ancestry with plants and/or bacteria. Although there is no evidence of a plastid (chloroplast-like organelle) in trypanosomatids, the presence of such genes suggests lateral gene transfer from some photosynthetic organism(s) during trypanosomatid evolution. Remarkably, many products of these horizontally acquired genes now function in the glycosome, a highly modified peroxisome unique to trypanosomatids and their near relatives.  相似文献   

3.
Although various members of the family Trypanosomatidae generate energy in a similar way, fundamental differences also exist and are not always recognized. In this review, Louis Tielens and Jaap Van Hellemond discuss the known differences in carbohydrate metabolism among trypanosomatids, and especially compare Leishmania with trypanosomatids such as Trypanosoma brucei and Phytomonas spp. Special attention will be paid to differences in end-products of carbohydrate degradation, to differences in anaerobic capacities between the various trypanosomatids and to the components of their respiratory chains, including the presence or absence of a plant-like alternative oxidase. Furthermore, evidence will be discussed which indicates that the succinate produced by trypanosomatids is formed mainly via an oxidative pathway and not via reduction of fumarate, a process known to occur in parasitic helminths.  相似文献   

4.
The constituents of the respiratory chain are believed to differ among the trypanosomatids; bloodstream stages of African trypanosomes and Phytomonas promastigotes oxidize ubiquinol by a ubiquinol:oxygen oxidoreductase, also known as alternative oxidase, whereas Leishmania spp. oxidize ubiquinol via a classic cytochrome-containing respiratory chain. The molecular basis for this elementary difference in ubiquinol oxidation by the mitochondrial electron-transport chain in distinct trypanosomatids was investigated. The presence of a gene encoding the plant-like alternative oxidase could be demonstrated in Phytomonas and Trypanosoma brucei , trypanosomatids that are known to contain alternative oxidase activity. Our results further demonstrated that Leishmania spp. lack a gene encoding the plant-like alternative oxidase, and therefore, all stages of Leishmania spp. will lack the alternative oxidase protein. The observed fundamental differences between the respiratory chains of distinct members of the trypanosomatid family are thus caused by the presence or absence of a gene encoding the plant-like alternative oxidase.  相似文献   

5.

SUMMARY

All living organisms are continuously faced with endogenous or exogenous stress conditions affecting genome stability. DNA repair pathways act as a defense mechanism, which is essential to maintain DNA integrity. There is much to learn about the regulation and functions of these mechanisms, not only in human cells but also equally in divergent organisms. In trypanosomatids, DNA repair pathways protect the genome against mutations but also act as an adaptive mechanism to promote drug resistance. In this review, we scrutinize the molecular mechanisms and DNA repair pathways which are conserved in trypanosomatids. The recent advances made by the genome consortiums reveal the complete genomic sequences of several pathogens. Therefore, using bioinformatics and genomic sequences, we analyze the conservation of DNA repair proteins and their key protein motifs in trypanosomatids. We thus present a comprehensive view of DNA repair processes in trypanosomatids at the crossroads of DNA repair and drug resistance.  相似文献   

6.
In the present study, we investigated the genetic variability among 49 new isolates of trypanosomatids from phytophagous Hemiptera by means of morphological characters, growth features, and biochemical (enzymes of ornithine-arginine cycle) and molecular markers (based on spliced-leader, and ribosomal genes). From 402 phytophagous insects dissected and examined for the presence of trypanosomatids, 228 species belonging to Pyrrhocoridae, Coreidae, Lygaeidae, and Pentatomidae families harbored trypanosomatids in their salivary glands, or digestive tubes. Among these insects, 211 carried promastigotes and only 17 had choanomastigote forms. The results show a strong association among morphology, growth features, and biochemical and molecular markers and reveal the genetic diversity of the isolates, which were assigned to Crithidia, Phytomonas, and Leptomonas; we found genetic polymorphism within all these genera, thus indicating high genetic variability among trypanosomatids from phytophagous insects.  相似文献   

7.
ABSTRACT. The restriction enzyme digestion of kinetoplast DNA from four Phytomonas serpens isolates shows an overall similar band pattern. One minicircle from isolate 30T was cloned and sequenced, showing low levels of homology but the same general features and organization as described for minicircles of other trypanosomatids. Extensive regions of the minicircle are composed by G and T on the H strand. These regions are very repetitive and similar to regions in a minicircle of Crithidia oncopelti and to telomeric sequences of Saccharomyces cerevisiae. Conserved Sequence Block 3, present in all trypanosomatids, is one nucleotide different from the consensus in P. serpens and provides a basis to differentiate P. serpens from other trypanosomatids. Electron microscopy of kinetoplast DNA evidenced a network with organization similar to other trypanosomatids and the measurement of minicircles confirmed the size of about 1.45 kb of the sequenced minicircle.  相似文献   

8.
ABSTRACT. Plant trypanosomatids cause lethal vascular wilting in palms of the Arecaceae family. Infections, affecting plants in South and Central America, can result in significant economic loss. The study of trypanosomatids that cause these diseases has been complicated due to the inability to culture these organisms for in vitro analyses. To develop a protocol that would facilitate studies of trypanosomatids, continuous in vitro cultures of phloemic trypanosomatids were established from apical stems of diseased coconut trees collected in endemic and non-endemic regions of Brazil (the states of Bahia and Rio de Janeiro, respectively). Although attempts at establishing axenic cultures were unsuccessful, it was found that trypanosomatid co-cultures could be successfully established and maintained. The procedure was to preculture media with 104 Aedes albopictus cells in Grace's medium supplemented with 10% heat-inactivated fetal bovine serum (without antibiotics or fungicides) for 3 d before adding 106 trypanosomatids/ml harvested from either fresh apical stem extracts or with 2 mm3 fragments of coconut apical stems. By day 7 under these conditions the parasites grew exponentially. Using this strategy, two isolates were identified and have been maintained in our laboratory for over 400 passages, demonstrating the efficacy of this culturing procedure. In situ the organisms were observed in vascular bundles and inside sieve elements of the phloem of diseased palms. In vitro parasites retained their mobility. Morphometric analysis revealed differences between Bahia and Rio de Janeiro isolates.  相似文献   

9.
Some molecular phylogenies of plastid-like genes suggest that chloroplasts (the structures responsible for photosynthesis in plants and algae) might have been secondarily lost in trypanosomatid parasites. Chloroplasts are present in some euglenids, which are closely related to trypanosomatids, and it has been argued that chloroplasts arose early in the diversification of the lineage Euglenozoa, to which trypanosomatids and euglenids belong (plastids-early hypothesis). This article reviews how euglenid ultrastructural systems are functionally integrated and phylogenetically correlated. I argue that chloroplast acquisition profoundly altered the structure of certain euglenids, and that the complete absence of these modifications in other euglenozoans is most consistent with their never having had a chloroplast. Ultrastructural evidence suggests that chloroplasts arose relatively recently within a specific subgroup of euglenids and that trypanosomatids are not secondarily non-photosynthetic (plastids-recent hypothesis).  相似文献   

10.
Any actual understanding of trypanosomatids in general requires a comprehensive analysis of the less-specialized species as thorough as our knowledge of the more specialized Leishmania and Trypanosoma. In this context, we have shown by antibody cross-reactivity that purified extracellular metallopeptidases from Phytomonas fran?ai, Crithidia deanei (cured strain) and Crithidia guilhermei share common epitopes with the leishmanial gp63. Flow cytometry and fluorescence microscopy analyses indicated the presence of gp63-like molecules on the cell surface of these lower trypanosomatids. Binding assays with explanted guts of Aedes aegypti incubated with purified gp63 and the pretreatment of trypanosomatids with anti-gp63 antibodies indicated that the gp63-like molecules are involved in the adhesive process of these trypanosomatids to the A. aegypti gut wall. In addition, our results indicate for the first time that the gp63-like molecule binds to a polypeptide of 50 kDa on the A. aegypti gut epithelium extract.  相似文献   

11.
Parasitic protozoa cause several diseases, affecting hundreds of millions, particularly in underdeveloped countries. Although these organisms are eukaryotic cells, some of them present major differences with their mammalian host in selected metabolic pathways. These differences may be exploited as targets for developing better pharmacological agents for the treatment of specific parasitic diseases. This review describes some of the differences in terms of antioxidant defenses between these organisms and their mammalian host, which may provide useful targets for the treatment of these diseases. Some of the potential targets are: (i). iron metabolism in Plasmodium, (ii). the presence of a Fe-containing form of superoxide dismutase in trypanosomatids and malaria-causing parasites, (iii). the unique trypanothione-dependent antioxidant metabolism in trypanosomatids, (iv). the ascorbate peroxidase found in Trypanosoma cruzi and perhaps present in other trypanosomatids.  相似文献   

12.
The previously identified major protein components of the paraflagellar rod in Trypanosoma cruzi, PAR 1 and PAR 2, were analyzed to determine if they are distinct proteins or different conformations of a single polypeptide as has been suggested for other trypanosomatids. Amino acid sequence analysis showed PAR 1 and PAR 2 to be two distinct polypeptides. Antibodies specific against either PAR 1 or PAR 2 were shown to each react with a distinct band in Western blots of paraflagellar isolates of T. cruzi and other trypanosomatids if rigorous protease inhibition was used. The PAR 2 message was isolated and characterized by Northern blot and nucleic acid sequence analysis. Preliminary analysis of the PAR 2 gene indicates that PAR 2 is a member of a multigene family with all members residing on a single chromosome.  相似文献   

13.
The Phytomonas genus was created arbitrarily to designate plant trypanosomes. A serological study with polyclonal and monoclonal antibodies was carried out to situate these trypanosomatids with respect to other trypanosomatids - Herpetomonas, Crithidia, Trypanosoma - and to compare different plant trypanosome strains with each other. The use of monoclonal antibodies directed against two different isolates makes it possible to distinguish plant trypanosomatids according to their geographical origin and to separate clearly the plant trypanosomatids from the South of France from other lower trypanosomatids, which seems to justify creating the Phytomonas genus.  相似文献   

14.
We observed a wide distribution of the carbohydrate epitopes galactosyl alpha(1-3)galactose (gal alpha1-3 gal), alpha-glucoside and alpha-mannoside in mono- and heteroxenic trypanosomatids by using fluorescein-labelled lectins of Euonymus europaeus (EE) and Concanavalin A (Con A) as well as sera from acute chagasic patients who have very high levels of anti-gal alpha(1-3)gal antibodies. The direct fluorescence test for gal alpha1-3 gal with EE was positive at minimum concentrations of 6 micrograms/ml for heteroxenic trypanosomatids and 0.7 micrograms/ml for monoxenic ones and for the plant parasite, Phytomonas. On the other hand, heteroxenic trypanosomatids that infect vertebrates bound ten-fold more Con A than monoxenic flagellates and Phytomonas. These data were confirmed in ELISA and Western Blot assays carried out with peroxidase-labelled EE and Con A. Euonymus europaeus recognized several glycoproteins in all trypanosomatids that we tested. Con A, however, recognized a glycoprotein cluster in heteroxenic protozoa, which ranging from 60-120 kDa, seemed to lack monoxenic parasites and Phytomonas. These findings suggest that alpha-D-mannose and alpha-D-glucose might play an important role in the interaction between trypanosomatids and vertebrate hosts.  相似文献   

15.
We observed a wide distribution of the carbohydrate epitopes galactosylα(1–3) galactose (galα1–3 gal), α-glucoside, and α-mannoside in mono- and heteroxenic trypanosomatids by using fluorescein-labelled lectins of Euonymus europaeus (EE) and Concanavalin A (Con A) as well as sera from acute chagasic patients who have very high levels of anti-galα(1–3) gal antibodies. The direct fluorescence test for galα1–3 gal with EE was positive at minimum concentrations of 6 μg/ml for heteroxenic trypanosomatids and 0.7 μg/ml for monoxenic ones and for the plant parasite, Phytomonas. On the other hand, heteroxenic trypanosomatids that infect vertebrates bound ten-fold more Con A than monoxenic flagellates and Phytomonas. These data were confirmed in ELISA and Western Blot assays carried out with peroxidase-labelled EE and Con A. Euonymus europaeus recognized several glycoproteins in all trypanosomatids that we tested. Con A, however, recognized a glycoprotein cluster in heteroxenic protozoa, which ranging from 60–120 kDa, seemed to lack monoxenic parasites and Phytomonas. These findings suggest that α-D-mannose and α-D-glucose might play an important role in the interaction between trypanosomatids and vertebrate hosts.  相似文献   

16.
BackgroundTelomeres are chromosome end structures important in the maintenance of genome homeostasis. They are replenished by the action of telomerase and associated proteins, such as the OB (oligonucleotide/oligosaccharide-binding)-fold containing telomere-end binding proteins (TEBP) which plays an essential role in telomere maintenance and protection. The nature of TEBPs is well known in higher and some primitive eukaryotes, but it remains undetermined in trypanosomatids. Previous in silico searches have shown that there are no homologs of the classical TEPBs in trypanosomatids, including Leishmania sp. However, Replication Protein A subunit 1 (RPA-1), an OB-fold containing DNA-binding protein, was found co-localized with trypanosomatids telomeres and showed a high preference for the telomeric G-rich strand.Methods and resultsWe predicted the absence of structural homologs of OB-fold containing TEBPs in the Leishmania sp. genome using structural comparisons. We demonstrated by molecular docking that the ssDNA binding mode of LaRPA-1 shares features with the higher eukaryotes POT1 and RPA-1 crystal structures ssDNA binding mode. Using fluorescence spectroscopy, protein-DNA interaction assays, and FRET, we respectively show that LaRPA-1 shares some telomeric functions with the classical TEBPs since it can bind at least one telomeric repeat, protect the telomeric G-rich DNA from 3′-5′ Exonuclease I digestion, and unfold telomeric G-quadruplex.ConclusionsOur results suggest that RPA-1 emerges as a TEBP in trypanosomatids, and in this context, we present two possible evolutionary landscapes of trypanosomatids RPA-1 that could reflect upon the evolution of OB-fold containing TEBPs from all eukaryotes.  相似文献   

17.
The results of comparative analysis of two phylogenetic trees of the trypanosomatids based on morphological and molecular characters are discussed. The morphological dendrogram was based on 33 ultrastructural characters, 6 light microscope characteristics and 8 biological characters. Molecular UPGMA dendrogram depicting differences (Dice distance) between examined trypanosomatids is based on the universally primed PCR polymorphisms. The general topology of both dendrograms are similar, with the Trypanosoma at the base. The genus Wallaceina appears to be monophyletic. In a contrary, the genera Leptomonas, Crithidia and Herpetomonas look like artificial groups according to both methods used. The cyst-forming homoxenous trypanosomatids from insects represent a monophyletic clade, which seems to be a separate genus. Two species of within genus Wallaceina are arranged as a separate subgenus.  相似文献   

18.
Trypanosomatids are widespread in several plant families and although most isolates have been classified as Phytomonas, other trypanosomatid genera can also infect plants. In order to assess the natural occurrence of non-Phytomonas trypanosomatids in plants we characterized 21 new trypanosomatid cultures, 18 from fruits and three from seeds of 17 plant species. The trypanosomatids from fruit and seeds were compared in terms of morphological, growth, biochemical and molecular features. The high diversity among the isolates permitted the classification of the new flagellates into the genera Crithidia and Leptomonas as well as Phytomonas. The data showed that natural fruit infection with non-Phytomonas trypanosomatids is more common than usually thought, being detected in 43% of the fruit isolates.  相似文献   

19.
Three hundred and eighty-six heteropteran specimens belonging to more than 90 species captured in Ghana, Kenya and Ethiopia were examined for the presence of trypanosomatid flagellates. Of those, 100 (26%) specimens were positive for trypanosomatids and the spliced leader RNA gene sequence was obtained from 81 (80%) of the infected bugs. Its sequence-based analysis placed all examined flagellates in 28 typing units. Among 19 newly described typing units, 16 are restricted to sub-Saharan Africa, three belong to previously described species and six to typing units found on other continents. This result was corroborated by the analysis of the ssrRNA gene, sequenced for at least one representative of each major spliced leader RNA-based clade. In all trees obtained, flagellates originating from sub-Saharan Africa were intermingled with those isolated from American, Asian and European hosts, revealing a lack of geographic correlation. They are dispersed throughout most of the known diversity of monoxenous trypanosomatids. However, a complex picture emerged when co-evolution with their heteropteran hosts was taken into account, since some clades are specific for a single host clade, family or even species, whereas other flagellates display a very low host specificity, with a capacity to parasitise heteropteran bugs belonging to different genera/families. The family Reduviidae contains the widest spectrum of trypanosomatids, most likely a consequence of their predatory feeding behaviour, leading to an accumulation of a variety of flagellates from their prey. The plant pathogenic genus Phytomonas is reported here from Africa, to our knowledge for the first time. Finding the same typing units in hosts belonging to different heteropteran families and coming from different continents strongly indicates that the global diversity of the insect trypanosomatids is most likely lower than was predicted on the basis of the "one host-one parasite" paradigm. The analysis presented significantly extends the known diversity of monoxenous insect trypanosomatids and will be instrumental in building a new taxonomy that reflects their true phylogenetic relationships.  相似文献   

20.
G. Arnqvist  M. Mäki 《Oecologia》1990,84(2):194-198
Summary Trypanosomatid flagellates are common protozoan gut parasites of a wide range of insect species. Water striders (Gerridae) harbour the trypanosomatid Blastocrithidia gerridis. Three different populations of the water strider Gerris odontogaster in northern Sweden were sampled to assess the infection rate dynamics of trypanosomatids. The initially very low infection rates (0%–15%) early in the season were followed by a rapid increase during the reproductive period of the water striders, reaching very high levels (80%–90%). The pathogenic effects of trypanosomatids on G. odontogaster adults were studied in laboratory experiments. The parasites caused a general reduction of host vigour. Male skating endurance was negatively correlated with the intensity of the trypanosomatid infection. However, infection of trypanosomatids increased the mortality among adults only when the water striders were subjected to food stress. The trypanosomatids did not reduce the fecundity of females provided with food. We suggest that trypanosomatid gut parasites may be an important mortality factor in water strider populations. Since the pathogenicity of the parasites is enhanced by stress, parasitism by trypanosomatids may contribute to the regulation of host populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号