首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cleavage at four sites (3/4A, 4A/4B, 4B/5A, and 5A/5B) in the hepatitis C virus polyprotein requires a viral serine protease activity residing in the N-terminal one-third of the NS3 protein. Sequence comparison of the residues flanking these cleavage sites reveals conserved features including an acidic residue (Asp or Glu) at the P6 position, a Cys or Thr residue at the P1 position, and a Ser or Ala residue at the P1' position. In this study, we used site-directed mutagenesis to assess the importance of these and other residues for NS3 protease-dependent cleavages. Substitutions at the P7 to P2' positions of the 4A/4B site had varied effects on cleavage efficiency. Only Arg at the P1 position or Pro at P1' substantially blocked processing at this site. Leu was tolerated at the P1 position, whereas five other substitutions allowed various degrees of cleavage. Substitutions with positively charged or other hydrophilic residues at the P7, P3, P2, and P2' positions did not reduce cleavage efficiency. Five substitutions examined at the P6 position allowed complete cleavage, demonstrating that an acidic residue at this position is not essential. Parallel results were obtained with substrates containing an active NS3 protease domain in cis or when the protease domain was supplied in trans. Selected substitutions blocking or inhibiting cleavage at the 4A/4B site were also examined at the 3/4A, 4B/5A, and 5A/5B sites. For a given substitution, a site-dependent gradient in the degree of inhibition was observed, with a 3/4A site being least sensitive to mutagenesis, followed by the 4A/4B, 4B/5A, and 5A/5B sites. In most cases, mutations abolishing cleavage at one site did not affect processing at the other serine protease-dependent sites. However, mutations at the 3/4A site which inhibited cleavage also interfered with processing at the 4B/5A site. Finally, during the course of these studies an additional NS3 protease-dependent cleavage site has been identified in the NS4B region.  相似文献   

2.
Proteinase 2A of human rhinovirus serotype 2 (HRV2 2A) was expressed in Escherichia coli and partially purified; the preparation was used to study various enzymatic parameters. Using a 16-amino acid peptide representing the native cleavage region of HRV2 2A, an apparent Km value of 5.4 x 10(-4) mol/liter was determined. A minimum of 9 amino acids (comprising residues P8 to P1') was necessary for cleavage to occur. Proteolysis of substituted peptides was highly tolerant toward changes at P1, P2', and P3' but an absolute requirement for glycine P1' and a high preference for threonine P2 was found. Furthermore, HRV2 2A only cleaved peptide substrates derived from other rhinovirus serotypes and poliovirus that possessed P2 Thr and P1' Gly. Thus, the sequence Thr-X-Gly may form the basis of the cellular cleavage site processed by rhinoviral 2As during viral replication. Studies with various inhibitors support the hypothesis that HRV2 2A belongs to a new class of cysteine proteinases.  相似文献   

3.
The cleavage specificity of protease C1, isolated from soybean (Glycine max (L.) Merrill) seedling cotyledons, was examined using oligopeptide substrates in an HPLC based assay. A series of peptides based on the sequence Ac-KVEKEESEEGE-NH2 was used, mimicking a natural cleavage site of protease C1 in the alpha subunit of the storage protein beta-conglycinin. A study of substrate peptides truncated from either the N- or C-terminus indicates that the minimal requirements for cleavage by protease C2 are three residues N-terminal to the cleaved bond, and two residues C-terminal (i.e. P3-P2'). The maximal rate of cleavage is reached with substrates containing four to five residues N-terminal to the cleaved bond and four residues C-terminal (i.e. P4 or P5 to P4'). The importance of Glu residues at the P1, P1', and P4 positions was examined using a series of substituted nonapeptides (P5-P4') with a base sequence of Ac-KVEKEESEE-NH2. At the P1 position, the relative ranking, based on kcat/Km, was E>Q>K>A>D>F>S. Substitutions at the P1' position yield the ranking E congruent withQ>A>S>D>K>F, while those at P4' had less effect on kcat/Km, yielding the ranking F congruent with S congruent with E congruent withD>K>A congruent withQ. These data show that protease C1 prefers to cleave at Glu-Glu and Glu-Gln bonds, and that the nature of the P4' position is less important. The fact that there is specificity in the cleavage of the oligopeptides suggests that the more limited specific cleavage of the alpha and alpha' subunits of beta-conglycinin by protease C1 is due to a combination of the sequence cleavage specificity of the protease and the accessibility of appropriate scissile peptide bonds on the surface of the substrate protein.  相似文献   

4.
The 3C region of human rhinovirus 14 was expressed in Escherichia coli. The microbially synthesized protease was functional, since the expressed precursor underwent autoproteolytic processing to generate mature molecules of the expected molecular weight and antigenicity. Mutation of the putative active-site Cys-146 residue to an alanine resulted in the synthesis of unprocessed precursor molecules. Large quantities of the 20-kilodalton protease were purified by a simple purification protocol, and the resulting molecule was shown to be biologically active in vitro against synthetic peptides corresponding to the 2C-3A cleavage site. This site was cleaved with high efficiency and fidelity and was used to generate kinetic data on the 3C protease. The protease exhibited sensitivity to Zn2+, was capable of cleaving five of seven rhinovirus cleavage site peptides tested with variable efficiency, and could distinguish authentic substrate peptides from control peptides containing the dipeptide cleavage sequence pair Gln-Gly.  相似文献   

5.
We probed the substrate specificity of a recombinant noncovalent complex of the full-length hepatitis C virus (HCV) NS3 serine protease and NS4A cofactor, using a series of small synthetic peptides derived from the three trans-cleavage sites of the HCV nonstructural protein sequence. We observed a distinct cleavage site preference exhibited by the enzyme complex. The values of the turnover number (k(cat)) for the most efficient NS4A/4B, 4B/5A, and 5A/5B peptide substrates were 1.6, 11, and 8 min(-1), respectively, and the values for the corresponding Michaelis-Menten constants (Km) were 280, 160, and 16 microM, providing catalytic efficiency values (k(cat)/Km) of 92, 1,130, and 8,300 M(-1) s(-1). An alanine-scanning study for an NS5A/5B substrate (P6P4') revealed that P1 Cys and P3 Val were critical. Finally, substitutions at the scissile P1 Cys residue by homocysteine (Hcy), S-methylcysteine (Mcy), Ala, S-ethylcysteine (Ecy), Thr, Met, D-Cys, Ser, and penicillamine (Pen) produced progressively less efficient substrates, revealing a stringent stereochemical requirement for a Cys residue at this position.  相似文献   

6.
Substrate specificity of the Escherichia coli outer membrane protease OmpT   总被引:1,自引:0,他引:1  
OmpT is a surface protease of gram-negative bacteria that has been shown to cleave antimicrobial peptides, activate human plasminogen, and degrade some recombinant heterologous proteins. We have analyzed the substrate specificity of OmpT by two complementary substrate filamentous phage display methods: (i) in situ cleavage of phage that display protease-susceptible peptides by Escherichia coli expressing OmpT and (ii) in vitro cleavage of phage-displayed peptides using purified enzyme. Consistent with previous reports, OmpT was found to exhibit a virtual requirement for Arg in the P1 position and a slightly less stringent preference for this residue in the P1' position (P1 and P1' are the residues immediately prior to and following the scissile bond). Lys, Gly, and Val were also found in the P1' position. The most common residues in the P2' position were Val or Ala, and the P3 and P4 positions exhibited a preference for Trp or Arg. Synthetic peptides based upon sequences selected by bacteriophage display were cleaved very efficiently, with kcat/Km values up to 7.3 x 10(6) M(-1) s(-1). In contrast, a peptide corresponding to the cleavage site of human plasminogen was hydrolyzed with a kcat/Km almost 10(6)-fold lower. Overall, the results presented in this work indicate that in addition to the P1 and P1' positions, additional amino acids within a six-residue window (between P4 and P2') contribute to the binding of substrate polypeptides to the OmpT binding site.  相似文献   

7.
The activity of the avian myeloblastosis virus (AMV) or the human immunodeficiency virus type 1 (HIV-1) protease on peptide substrates which represent cleavage sites found in the gag and gag-pol polyproteins of Rous sarcoma virus (RSV) and HIV-1 has been analyzed. Each protease efficiently processed cleavage site substrates found in their cognate polyprotein precursors. Additionally, in some instances heterologous activity was detected. The catalytic efficiency of the RSV protease on cognate substrates varied by as much as 30-fold. The least efficiently processed substrate, p2-p10, represents the cleavage site between the RSV p2 and p10 proteins. This peptide was inhibitory to the AMV as well as the HIV-1 and HIV-2 protease cleavage of other substrate peptides with Ki values in the 5-20 microM range. Molecular modeling of the RSV protease with the p2-p10 peptide docked in the substrate binding pocket and analysis of a series of single-amino acid-substituted p2-p10 peptide analogues suggested that this peptide is inhibitory because of the potential of a serine residue in the P1' position to interact with one of the catalytic aspartic acid residues. To open the binding pocket and allow rotational freedom for the serine in P1', there is a further requirement for either a glycine or a polar residue in P2' and/or a large amino acid residue in P3'. The amino acid residues in P1-P4 provide interactions for tight binding of the peptide in the substrate binding pocket.  相似文献   

8.
The protease domain of the hepatitis C virus (HCV) protein NS3 was expressed in Escherichia coli, purified to homogeneity, and shown to be active on peptides derived from the sequence of the NS4A-NS4B junction. Experiments were carried out to optimize protease activity. Buffer requirements included the presence of detergent, glycerol, and dithiothreitol, pH between 7.5 and 8.5, and low ionic strength. C- and N-terminal deletion experiments defined a peptide spanning from the P6 to the P4' residue as a suitable substrate. Cleavage kinetics were subsequently measured by using decamer P6-P4' peptides corresponding to all intermolecular cleavage sites of the HCV polyprotein. The following order of cleavage efficiency, in terms of kcat/Km, was determined: NS5A-NS5B > NS4A-NS4B >> NS4B-NS5A. A 14-mer peptide containing residues 21 to 34 of the protease cofactor NS4A (Pep4A 21-34), when added in stoichiometric amounts, was shown to increase cleavage rates of all peptides, the largest effect (100-fold) being observed on the hydrolysis of the NS4B-NS5A decamer. From the kinetic analysis of cleavage data, we conclude that (i) primary structure is an important determinant of the efficiency with which each site is cleaved during polyprotein processing, (ii) slow cleavage of the NS4B-NS5A site in the absence of NS4A is due to low binding affinity of the enzyme for this site, and (iii) formation of a 1:1 complex between the protease and Pep4A 21-34 is sufficient and required for maximum activation.  相似文献   

9.
Kinetic analysis and modeling studies of HIV-1 and HIV-2 proteinases were carried out using the oligopeptide substrate [formula: see text] and its analogs containing single amino acid substitutions in P3-P3' positions. The two proteinases acted similarly on the substrates except those having certain hydrophobic amino acids at P2, P1, P2', and P3' positions (Ala, Leu, Met, Phe). Various amino acids seemed to be acceptable at P3 and P3' positions, while the P2 and P2' positions seemed to be more restrictive. Polar uncharged residues resulted in relatively good binding at P3 and P2 positions, while at P2' and P3' positions they gave very high Km values, indicating substantial differences in the respective S and S' subsites of the enzyme. Lys prevented substrate hydrolysis at any of the P2-P2' positions. The large differences for subsite preference at P2 and P2' positions seem to be at least partially due to the different internal interactions of P2 residue with P1', and P2' residue with P1. As expected on the basis of amino acid frequency in the naturally occurring cleavage sites, hydrophobic residues at P1 position resulted in cleavable peptides, while polar and beta-branched amino acids prevented hydrolysis. On the other hand, changing the P1' Pro to other amino acids prevented substrate hydrolysis, even if the substituted amino acid had produced a good substrate in other oligopeptides representing naturally occurring cleavage sites. The results suggest that the subsite specificity of the HIV proteinases may strongly depend on the sequence context of the substrate.  相似文献   

10.
The NS3 (dengue virus non-structural protein 3) serine protease of dengue virus is an essential component for virus maturation, thus representing an attractive target for the development of antiviral drugs directed at the inhibition of polyprotein processing. In the present study, we have investigated determinants of substrate specificity of the dengue virus NS3 protease by using internally quenched fluorogenic peptides containing Abz (o-aminobenzoic acid; synonymous to anthranilic acid) and 3-nitrotyrosine (nY) representing both native and chimaeric polyprotein cleavage site sequences. By using this combinatorial approach, we were able to describe the substrate preferences and determinants of specificity for the dengue virus NS2B(H)-NS3pro protease. Kinetic parameters (kcat/K(m)) for the hydrolysis of peptide substrates with systematic truncations at the prime and non-prime side revealed a length preference for peptides spanning the P4-P3' residues, and the peptide Abz-RRRRSAGnY-amide based on the dengue virus capsid protein processing site was discovered as a novel and efficient substrate of the NS3 protease (kcat/K(m)=11087 M(-1) x s(-1)). Thus, while having confirmed the exclusive preference of the NS3 protease for basic residues at the P1 and P2 positions, we have also shown that the presence of basic amino acids at the P3 and P4 positions is a major specificity-determining feature of the dengue virus NS3 protease. Investigation of the substrate peptide Abz-KKQRAGVLnY-amide based on the NS2B/NS3 polyprotein cleavage site demonstrated an unexpected high degree of cleavage efficiency. Chimaeric peptides with combinations of prime and non-prime sequences spanning the P4-P4' positions of all five native polyprotein cleavage sites revealed a preponderant effect of non-prime side residues on the K(m) values, whereas variations at the prime side sequences had higher impact on kcat.  相似文献   

11.
K E Reed  A Grakoui    C M Rice 《Journal of virology》1995,69(7):4127-4136
Cleavage at the 2/3 site of hepatitis C virus (HCV) is thought to be mediated by a virus-encoded protease composed of the region of the polyprotein encoding NS2 and the N-terminal one-third of NS3. This protease is distinct from the NS3 serine protease, which is responsible for downstream cleavages in the nonstructural region. Site-directed mutagenesis of residues surrounding the 2/3 cleavage site showed that cleavage is remarkably resistant to single-amino-acid substitutions from P5 to P3' (GWRLL decreases API). The only mutations which dramatically inhibited cleavage were the ones most likely to alter the conformation of the region, such as Pro substitutions at the P1 or P1' position, deletion of both amino acids at P1 and P1', or simultaneous substitution of multiple Ala residues. Cotransfection experiments were done to provide additional information on the polypeptide requirements for bimolecular cleavage. Polypeptides used in these experiments contained amino acid substitutions and/or deletions in NS2 and/or the N-terminal one-third of NS3. Polypeptides with defects in either NS2 or the N-terminal portion of NS3 but not both were cleaved when cotransfected with constructs expressing intact versions of the defective region. Cotransfection experiments also showed that certain defective NS2-3 constructs partially inhibited cleavage of wild-type polypeptides. Although these results show that inefficient cleavage can occur in a bimolecular reaction, they suggest that both molecules must contribute a functional subunit to allow formation of a protease which is capable of cleavage at the 2/3 site. This reaction may resemble the cis cleavage thought to occur at the 2/3 site during processing of the wild-type HCV polyprotein.  相似文献   

12.
The NS3 serine protease of dengue virus is required for the maturation of the viral polyprotein and consequently represents a promising target for the development of antiviral inhibitors. However, the substrate specificity of this enzyme has been characterized only to a limited extent. In this study, we have investigated product inhibition of the NS3 protease by synthetic peptides derived from the P6-P1 and the P1'-P5' regions of the natural polyprotein substrate. N-terminal cleavage site peptides corresponding to the P6-P1 region of the polyprotein were found to act as competitive inhibitors of the enzyme with K(i) values ranging from 67 to 12 microM. The lowest K(i) value was found for the peptide representing the NS2A/NS2B cleavage site, RTSKKR. Inhibition by this cleavage site sequence was analyzed by using shorter peptides, SKKR, KKR, KR, AGRR, and GKR. With the exception of the peptide AGRR which did not inhibit the protease at a concentration of 1mM, all other peptides displayed K(i) values in the range from 188 to 22 microM. Peptides corresponding to the P1'-P5' region of the polyprotein cleavage sites had no effect on enzymatic activity at a concentration of 1mM. Molecular docking data of peptide inhibitors to a homology-based model of the dengue virus type 2 NS2B(H)-NS3p co-complex indicate that binding of the non-prime site product inhibitors is similar to ground-state binding of the corresponding substrates.  相似文献   

13.
Regulated proteolysis of the polyprotein precursor by the NS2B-NS3 protease is required for the propagation of infectious virions. Unless the structural and functional parameters of NS2B-NS3 are precisely determined, an understanding of its functional role and the design of flaviviral inhibitors will be exceedingly difficult. Our objectives were to define the substrate recognition pattern of the NS2B-NS3 protease of West Nile and Dengue virises (WNV and DV respectively). To accomplish our goals, we used an efficient, 96-well plate format, method for the synthesis of 9-mer peptide substrates with the general P4-P3-P2-P1-P1'-P2'-P3'-P4'-Gly structure. The N-terminus and the constant C-terminal Gly of the peptides were tagged with a fluorescent tag and with a biotin tag respectively. The synthesis was followed by the proteolytic cleavage of the synthesized, tagged peptides. Because of the strict requirement for the presence of basic amino acid residues at the P1 and the P2 substrate positions, the analysis of approx. 300 peptide sequences was sufficient for an adequate representation of the cleavage preferences of the WNV and DV proteinases. Our results disclosed the strict substrate specificity of the WNV protease for which the (K/R)(K/R)R/GG amino acid motifs was optimal. The DV protease was less selective and it tolerated well the presence of a number of amino acid residue types at either the P1' or the P2' site, as long as the other position was occupied by a glycine residue. We believe that our data represent a valuable biochemical resource and a solid foundation to support the design of selective substrates and synthetic inhibitors of flaviviral proteinases.  相似文献   

14.
The C-terminal cysteine protease domain of Semliki Forest virus nonstructural protein 2 (nsP2) regulates the virus life cycle by sequentially cleaving at three specific sites within the virus-encoded replicase polyprotein P1234. The site between nsP3 and nsP4 (the 3/4 site) is cleaved most efficiently. Analysis of Semliki Forest virus-specific cleavage sites with shuffled N-terminal and C-terminal half-sites showed that the main determinants of cleavage efficiency are located in the region preceding the cleavage site. Random mutagenesis analysis revealed that amino acid residues in positions P4, P3, P2, and P1 of the 3/4 cleavage site cannot tolerate much variation, whereas in the P5 position most residues were permitted. When mutations affecting cleavage efficiency were introduced into the 2/3 and 3/4 cleavage sites, the resulting viruses remained viable but had similar defects in P1234 processing as observed in the in vitro assay. Complete blockage of the 3/4 cleavage was found to be lethal. The amino acid in position P1' had a significant effect on cleavage efficiency, and in this regard the protease markedly preferred a glycine residue over the tyrosine natively present in the 3/4 site. Therefore, the cleavage sites represent a compromise between protease recognition and other requirements of the virus life cycle. The protease recognizes at least residues P4 to P1', and the P4 arginine residue plays an important role in the fast cleavage of the 3/4 site.  相似文献   

15.
J Bouvier  P Schneider  R Etges  C Bordier 《Biochemistry》1990,29(43):10113-10119
The promastigote surface protease (PSP) of Leishmania is a neutral membrane-bound zinc enzyme. The protease has no exopeptidase activity and does not cleave a large selection of substrates with chromogenic and fluorogenic leaving groups at the P1' site. The substrate specificity of the enzyme was studied by using natural and synthetic peptides of known amino acid sequence. The identification of 11 cleavage sites indicates that the enzyme preferentially cleaves peptides at the amino side when hydrophobic residues are in the P1' site and basic amino acid residues in the P2' and P3' sites. In addition, tyrosine residues are commonly found at the P1 site. Hydrolysis is not, however, restricted to these residues. These results have allowed the synthesis of a model peptide, H2N-L-I-A-Y-L-K-K-A-T-COOH, which is cleaved by PSP between the tyrosine and leucine residues with a kcat/Km ratio of 1.8 X 10(6) M-1 s-1. Furthermore, a synthetic nonapeptide overlapping the last four amino acids of the prosequence and the first five residues of mature PSP was found to be cleaved by the protease at the expected site to release the mature enzyme. This result suggests a possible autocatalytic mechanism for the activation of the protease. Finally, the hydroxamate-derivatized dipeptide Cbz-Tyr-Leu-NHOH was shown to inhibit PSP competitively with a KI of 17 microM.  相似文献   

16.
Rabbit hemorrhagic disease virus, a positive-stranded RNA virus of the family Caliciviridae, encodes a trypsin-like cysteine protease as part of a large polyprotein. Upon expression in Escherichia coli, the protease releases itself from larger precursors by proteolytic cleavages at its N and C termini. Both cleavage sites were determined by N-terminal sequence analysis of the cleavage products. Cleavage at the N terminus of the protease occurred with high efficiency at an EG dipeptide at positions 1108 and 1109. Cleavage at the C terminus of the protease occurred with low efficiency at an ET dipeptide at positions 1251 and 1252. To study the cleavage specificity of the protease, amino acid substitutions were introduced at the P2, P1, and P1' positions at the cleavage site at the N-terminal boundary of the protease. This analysis showed that the amino acid at the P1 position is the most important determinant for substrate recognition. Only glutamic acid, glutamine, and aspartic acid were tolerated at this position. At the P1' position, glycine, serine, and alanine were the preferred substrates of the protease, but a number of amino acids with larger side chains were also tolerated. Substitutions at the P2 position had only little effect on the cleavage efficiency. Cell-free expression of the C-terminal half of the ORF1 polyprotein showed that the protease catalyzes cleavage at the junction of the RNA polymerase and the capsid protein. An EG dipeptide at positions 1767 and 1768 was identified as the putative cleavage site. Our data show that rabbit hemorrhagic disease virus encodes a trypsin-like cysteine protease that is similar to 3C proteases with regard to function and specificity but is more similar to 2A proteases with regard to size.  相似文献   

17.
Affinity tags have become indispensable tools for protein expression and purification. Yet, because they have the potential to interfere with structural and functional studies, it is usually desirable to remove them from the target protein. The stringent sequence specificity of the tobacco etch virus (TEV) protease has made it a useful reagent for this purpose. However, a potential limitation of TEV protease is that it is believed to require a Gly or Ser residue in the P1' position of its substrates to process them with reasonable efficiency. Consequently, after an N-terminal affinity tag is removed by TEV protease, the target protein will usually retain a non-native Ser or Gly residue on its N-terminus, and in some cases this may affect its biological activity. To investigate the stringency of the requirement for Gly or Ser in the P1' position of a TEV protease recognition site, we constructed 20 variants of a fusion protein substrate with an otherwise optimal recognition site, each containing a different amino acid in the P1' position. The efficiency with which these fusion proteins were processed by TEV protease was compared both in vivo and in vitro. Additionally, the kinetic parameters K(M) and k(cat) were determined for a representative set of peptide substrates with amino acid substitutions in the P1' position. The results indicate that many side-chains can be accommodated in the P1' position of a TEV protease recognition site with little impact on the efficiency of processing.  相似文献   

18.
The specificity and reactivity of complement serine proteases D, B, Bb, C2, and C2a were determined using a series of peptide thioester substrates. The rates of thioester hydrolysis were measured using assay mixtures containing the thiol reagent 4,4'-dithiodipyridine at pH 7.5. Each substrate contained a P1 arginine residue, and the effect of various groups and amino acids in the P2, P3, P4, and P5 positions was determined using kcat/Km values to compare reactivities. Among peptide thioesters corresponding to the activation site sequence in B, dipeptide thioesters containing a P2 lysine residue were the best substrates for D. Extending the chain to include a P3 or P4 amino acid resulted in loss of activity, and neither the tripeptide nor the tetrapeptide containing the cleavage sequence of B was hydrolyzed. Overall, D cleaved fewer substrates and was 2-3 orders of magnitude less reactive than C1s against some thioester substrates. C2 and fragment C2a had comparable reactivities and hydrolyzed peptides containing Leu-Ala-Arg and Leu-Gly-Arg, which have the same sequence as the cleavage sites of C3 and C5, respectively. The best substrates for C2 and C2a were Z-Gly-Leu-Ala-Arg-SBzl and Z-Leu-Gly-Leu-Ala-Arg-SBzl, respectively, where Bzl is benzyl. B was the least reactive among these complement enzymes. The best substrate for B was Z-Lys-Arg-SBzl with a kcat/Km value of 1370 M-1 s-1. The catalytic fragment of B, Bb, had higher activity toward these peptide thioester substrates. The best substrate for Bb was Z-Gly-Leu-Ala-Arg-SBzl with a kcat/Km similar to C2a and 10 times higher than the value for B. Both C2a and Bb were considerably more reactive against C3-like than C5-like substrates. Bovine trypsin hydrolyzed thioester substrates with kcat/Km approximately 10(3) higher than the complement enzymes. These thioester substrates for D, B, and C2 should be quite useful in kinetic and active site studies of the purified enzymes.  相似文献   

19.
The human cytomegalovirus (HCMV) protease is a potential target for antiviral chemotherapeutics; however, autoprocessing at internal sites, particularly at positions 143 and 209, hinders the production of large quantities of stable enzyme for either screening or structural studies. Using peptides encompassing the sequence of the natural M-site substrate (P5-P5', GVVNA/SCRLA), we previously demonstrated that substitution of glycine for valine at the P3 position in the substrate abrogates processing by the recombinant protease in vitro. We now demonstrate that introduction of the V-to-G substitution in the P3 positions of the two major internal processing sites, positions 143 and 209, in the mature HCMV protease renders the enzyme stable to autoprocessing. When expressed in Escherichia coli, the doubly substituted protease was produced almost exclusively as the 30-kDa full-length protein. The full-length V141G, V207G (V-to-G changes at positions 141 and 207) protease was purified as a soluble protein by a simple two-step procedure, ammonium sulfate precipitation followed by DEAE ion-exchange chromatography, resulting in 10 to 15 mg of greater than 95% pure enzyme per liter. The stabilized enzyme was characterized kinetically and was indistinguishable from the wild-type recombinant protease, exhibiting Km and catalytic constant values of 0.578 mM and 13.18/min, respectively, for the maturation site (M-site) peptide substrate, GVVNASCRLARR (underlined residues indicate additions to or substitutions from peptides derived from the wild-type substrate). This enzyme was also used to perform inhibition studies with a series of truncated and/or substituted maturation site peptides. Short nonsubstrate M-site-derived peptides were demonstrated to be competitive inhibitors of cleavage in vitro, and these analyses defined amino acids VVNA, P4 through P1 in the substrate, as the minimal substrate binding and recognition sequence for the HCMV protease.  相似文献   

20.
Severe acute respiratory syndrome coronavirus (SARS-CoV) 3C-like protease (3CL(pro)) mediates extensive proteolytic processing of replicase polyproteins, and is considered a promising target for anti-SARS drug development. Here we present a rapid and high-throughput screening method to study the substrate specificity of SARS-CoV 3CL(pro). Six target amino acid positions flanking the SARS-CoV 3CL(pro) cleavage site were investigated. Each batch of mixed peptide substrates with defined amino acid substitutions at the target amino acid position was synthesized via the "cartridge replacement" approach and was subjected to enzymatic cleavage by recombinant SARS-CoV 3CL(pro). Susceptibility of each peptide substrate to SARS-CoV 3CL(pro) cleavage was monitored simultaneously by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The hydrophobic pocket in the P2 position at the protease cleavage site is crucial to SARS-CoV 3CL(pro)-specific binding, which is limited to substitution by hydrophobic residue. The binding interface of SARS-CoV 3CL(pro) that is facing the P1' position is suggested to be occupied by acidic amino acids, thus the P1' position is intolerant to acidic residue substitution, owing to electrostatic repulsion. Steric hindrance caused by some bulky or beta-branching amino acids in P3 and P2' positions may also hinder the binding of SARS-CoV 3CL(pro). This study generates a comprehensive overview of SARS-CoV 3CL(pro) substrate specificity, which serves as the design basis of synthetic peptide-based SARS-CoV 3CL(pro) inhibitors. Our experimental approach is believed to be widely applicable for investigating the substrate specificity of other proteases in a rapid and high-throughput manner that is compatible for future automated analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号