首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gel-to-fluid phase transitions of several phosphatidylethanolamines (PE's) and phosphatidylcholines (PC's) have been investigated in the presence of three short-chain alcohols. The effects of the alcohols on the thermodynamic reversibility of these transitions was studied and it was found that the transitions for PC's are not thermodynamically reversible at relatively high alcohol concentrations. The PE transitions are thermodynamically reversible for all alcohol concentrations, and the PE's do not exhibit the biphasic effects of alcohol on the transition temperature previously reported for the PC's (Rowe, E.S. (1983) Biochemistry 22, 3299-3305). The biphasic transition temperature effects and the thermodynamic irreversibility of PC transitions at high alcohol concentrations appear to be correlated with the induction of a fully interdigitated gel phase recently reported in the literature (Simon, S.A. and McIntosh, T.J. (1984) Biochim. Biophys. Acta 773, 169-172). The biological significance of these findings is discussed.  相似文献   

2.
Short-chain lecithin/long-chain phospholipid unilamellar vesicles (SLUVs), unlike pure long-chain lecithin vesicles, are excellent substrates for water-soluble phospholipases. Hemolysis assays show that greater than 99.5% of the short-chain lecithin is partitioned in the bilayer. In these binary component vesicles, the short-chain species is the preferred substrate, while the long-chain phospholipid can be treated as an inhibitor (phospholipase C) or poor substrate (phospholipase A2). For phospholipase C Bacillus cereus, apparent Km and Vmax values show that bilayer-solubilized diheptanoylphosphatidylcholine (diheptanoyl-PC) is nearly as good a substrate as pure micellar diheptanoyl-PC, although the extent of short-chain lecithin hydrolysis depends on the phase state of the long-chain lipid. For phospholipase A2 Naja naja naja, both Km and Vmax values show a greater range: in a gel-state matrix, diheptanoyl-PC is hydrolyzed with micellelike kinetic parameters; in a liquid-crystalline matrix, the short-chain lecithin becomes comparable to the long-chain component. Both enzymes also show an anomalous increase in specific activity toward diheptanoyl-PC around the phase transition temperature of the long-chain phospholipid. Since the short-chain lecithin does not exhibit a phase transition, this must reflect fluctuations in head-group area or vertical motions of the short-chain lecithin caused by surrounding long-chain lecithin molecules. These results are discussed in terms of a specific model for SLUV hydrolysis and a general explanation for the "interfacial activation" observed with water-soluble phospholipases.  相似文献   

3.
Bicelles are a novel form of long-chain/short-chain phospholipid aggregates, which are useful for biophysical and biochemical studies of membrane-associated biomolecules. In this work, we review the development of bicelles and their uses in structural characterization (primarily via NMR, circular dichroism, and fluorescence) of membrane-associated peptides. We also show that bicellar phospholipids are substrates for lipolytic enzymes. For this latter work, we employed a 31P NMR enzymatic assay system to examine the kinetic behavior of cobra venom phospholipase A(2) toward a variety of bicellar substrates. This enzyme hydrolyzed all bicelle lipids at rates comparable to those found for the enzyme action on traditional micellar substrates, which are the best substrates for this enzyme. In addition, we found that this PLA(2) showed no significant preference for long-chain or short-chain phospholipids when they were presented as mixtures in bicelles.  相似文献   

4.
Min JH  Wilder C  Aoki J  Arai H  Inoue K  Paul L  Gelb MH 《Biochemistry》2001,40(15):4539-4549
Platelet-activating factor acetylhydrolases (PAF-AHs) are a group of enzymes that hydrolyze the sn-2 acetyl ester of PAF (phospholipase A(2) activity) but not phospholipids with two long fatty acyl groups. Our previous studies showed that membrane-bound human plasma PAF-AH (pPAF-AH) accesses its substrate only from the aqueous phase, which raises the possibility that this enzyme can hydrolyze a variety of lipid esters that are partially soluble in the aqueous phase. Here we show that pPAF-AH has broad substrate specificity in that it hydrolyzes short-chain diacylglycerols, triacylglycerols, and acetylated alkanols, and displays phospholipase A(1) activity. On the basis of all of the substrate specificity results, it appears that the minimal structural requirement for a good pPAF-AH substrate is the portion of a glyceride derivative that includes an sn-2 ester and a reasonably hydrophobic chain in the position occupied by the sn-1 chain. In vivo, pPAF-AH is bound to high and low density lipoproteins, and we show that the apparent maximal velocity for this enzyme is not influenced by lipoprotein binding and that the enzyme hydrolyzes tributyroylglycerol as well as the recombinant pPAF-AH does. Broad substrate specificity is also observed for the structurally homologous PAF-AH which occurs intracellularly [PAF-AH(II)] as well as for the PAF-AH from the lower eukaryote Physarum polycephalum although pPAF-AH and PAF-AH(II) tolerate the removal of the sn-3 headgroup better than the PAF-AH from P. polycephalum does. In contrast, the intracellular PAF-AH found in mammalian brain [PAF-AH(Ib) alpha 1/alpha 1 and alpha 2/alpha 2 homodimers] is more selectively operative on compounds with a short acetyl chain although this enzyme also displays significant phospholipase A(1) activity.  相似文献   

5.
Feng J  Roberts MF  Drin G  Scarlata S 《Biochemistry》2005,44(7):2577-2584
Phosphatidylinositol-specific phospholipase C (PLC) enzymes catalyze the hydrolysis of phosphatidylinositol 4,5 bisphosphate in a two step reaction that involves a cyclic intermediate. The PLCbetafamily are activated by both the alpha and betagamma subunits of heterotrimeric G proteins. To determine which catalytic step is affected by Gbetagamma subunits, we compared the change in PLCbeta(2) activity catalysis toward monomeric short-chain phosphatidylinositol (PI) substrates and monomeric water-soluble cyclic inositol phosphates as well as long-chain PI in bilayer and micellar interfaces in the absence and presence of Gbetagammasubunits. Unlike other PLC enzymes, no cyclic products were detected for either wild-type PLCbeta(2) or a chimeric protein composed of the PH domain of PLCbeta(2) and the catalytic domain of PLCdelta(1). Using cIP as a substrate to examine the second step of the reaction, we found that the presence of Gbetagamma subunits stimulated this step by a higher level than that for the overall reaction (k(cat) 1.5-fold (cIP) as opposed to 1.20-fold for soluble diC(4)PI). Detergents above their CMC can generate the same kinetic activation of PLCbeta(2) as Gbetagamma, suggesting that hydrophobic compounds stabilize the activated state of the enzyme. The most pronounced effect of Gbetagamma is that it relieves competitive product inhibition. Taken together, our results show that activation of PLCbeta(2) occurs through enhancement in the catalytic rate of hydrolysis of the cyclic intermediate and increased product release, and that hydrophobic interactions play a key role.  相似文献   

6.
A great mystery in the mechanism of phospholipase A2 (PLA2) and many other lipolytic enzymes is the "interfacial activation" induced by micellar but not monomeric substrates. Equally mysterious is the lack of interfacial activation in bee venom PLA2, as opposed to PLA2s from pancreas and other sources. We have probed these problems using the conformationally restricted short-chain cyclopentano-analogues of diacylphosphatidylcholine (Cp-DCnPC, all-trans isomer). In the reaction catalyzed by bovine pancreatic PLA2, Cp-DC8PC behaved differently from DC8PC in that its monomers and micelles showed comparable activities (but lower than the activity of DC8PC). This result suggests that the activity of PLA2 can be regulated by substrate conformation and supports the "substrate conformation model" (Wells, M. A. (1974) Biochemistry 13, 2248-2257), but raises a question as to whether Cp-DC8PC mimics monomers or micelles of DC8PC. Conformational analysis by 1H NMR revealed that monomeric Cp-DC8PC was conformationally restricted near the carbonyl region, a property characteristic of micelles. Thus, monomeric CP-DC8PC can be considered as a conformational analogue of micelles, but the important structural feature lies in the CH2COO region instead of the glycerol backbone. CP-DC8PC was then used to test a previous proposal that the bee venom PLA2 hydrolyzes monomers but not micelles (which would predict little or no activity for Cp-DC8PC since its conformation is micelle-like whether below or above its critical micelle concentration). The results showed that Cp-DC8PC is a relatively good substrate for the bee venom PLA2 in comparison with the pancreatic PLA2. This and other evidence together suggest that the bee venom PLA2 is not sensitive to the conformation of monomeric and micellar substrates and hydrolyzes both monomers and micelles. The results in both PLA2s demonstrate the usefulness of cyclopentano-phospholipids in probing the mechanism of phospholipases and the roles of substrate conformation in the catalysis of PLA2.  相似文献   

7.
Alkylacylglycerols are synthesized when choline-phospholipids are degraded by a phospholipase C. This class of compounds has been shown to have biological activities; however, the mechanism of action is unknown. A series of alkyl-linked diglycerides were synthesized and tested for activity in an in vitro assay for protein kinase C. When protein kinase C activity was stimulated with the synthetic diacylglyceride analog 1-oleoyl-2-acetyl-sn-glycerol, the addition of alkyl glycerides caused a concentration-dependent inhibition of protein kinase C activity. Comparison of the protein kinase C inhibition by this series of 1-O-alkyl-2-acyl analogs revealed that both saturated and unsaturated long-chain groups in position 1 were effective and that dietherglycerols with short-chain moieties in position 2 were also effective. It is concluded from these studies that the biological activity of alkyl-linked glycerides may be expressed through protein kinase C inhibition.  相似文献   

8.
A simple, high-yielding preparation of monolysocardiolipin (MLCL) by phospholipase A2 hydrolysis of cardiolipin (CL) in methanol on a semi-preparative scale is described. In methanol, phospholipase A2 preferentially hydrolyzes CL to MLCL. This selectivity results in ~80% yield of MLCL. The synthesized MLCL and dilysocardiolipin were characterized by NMR and ESI-MS/MS. Only the sn-2 position of CL was hydrolyzed by phospholipase A2 in methanol.  相似文献   

9.
Sarcoplasmic reticulum (SR) membranes isolated from rabbit and lobster muscles have similar phospholipid classes, but they differ in plasmalogen content. The plasmalogenic species are mostly distributed among phosphatidylethanolamines (PE's) and make up about 62% of the total in rabbit SR and about 46% in lobster membranes. Lobster SR phospholipids contain large amounts of polyunsaturated fatty acids which are present in low amounts in rabbit membranes. The total unsaturated fatty acids of phosphatidylcholines (PC's) represent about 53% and 73% of the total fatty chains for rabbit and lobster SR, respectively. The values found for PE's were about 56% and 64%, respectively. Furthermore, lobster membranes contain significant amounts of PC and PE molecular species with unsaturated fatty acids in positions 1 and 2, whereas rabbit SR contain low amounts.  相似文献   

10.
The physico-chemical properties of short-chain phosphatidylcholine are reviewed to the extent that its biological activity as a mild detergent can be rationalized. Long-chain diacylphosphatidylcholines are typical membrane phospholipids that form preferentially smectic lamellar phases (bilayers) when dispersed in water. In contrast, the preferred phase of the short-chain analogues dispersed in excess water is the micellar phase. The preferred conformation and the dynamics of short-chain phosphatidylcholines in the monomeric and micellar state present in H(2)O are discussed. The motionally averaged conformation of short-chain phosphatidylcholines is then compared to the single-crystal structures of membrane lipids. The main conclusion emerging is that in terms of preferred conformation and motional averaging short-chain phosphatidylcholines closely resemble their long-chain analogues. The dispersing power of short-chain phospholipids is emphasized in the second part of the review. Evidence is presented to show that this class of compounds is superior to most other detergents used in the solubilization of membrane proteins and the reconstitution of the solubilized proteins to artificial membrane systems (proteoliposomes). The prominent feature of the solubilization/reconstitution of integral membrane proteins by short-chain PC is the retention of the native protein structure and hence the protein function. Due to their special detergent-like properties, short-chain PC lend themselves very well not only to membrane solubilization but also to the purification of integral membrane proteins. The retention of the native protein structure in the solubilized state, i.e. in mixed micelles consisting of the integral membrane protein, intrinsic membrane lipids and short-chain PC, is rationalized. It is hypothesized that short-chain PC interacts primarily with the lipid bilayer of a membrane and very little if at all with the membrane proteins. In this way, the membrane protein remains associated with its preferred intrinsic membrane lipids and retains its native structure and its function.  相似文献   

11.
Several short-chain asymmetric lecithins with a total of 14 carbons in the acyl chains (ranging from 1-lauroyl-2-acetylphosphatidylcholine to 1-hexanoyl-2-octanoylphosphatidylcholine) have been synthesized and characterized. The specific activities of phospholipase A2 from cobra venom, phospholipase A2 from porcine pancreas, and phospholipase C from Bacillus cereus toward these lecithins as micelles have been determined. The results of these kinetic studies allow the definition of hydrophobic binding requirements in the active sites of these water-soluble phospholipases. For phospholipase C, with the exception of monomyristoylphosphatidylcholine, each of the asymmetric short-chain lecithins exhibits high activity, comparable to the 14-carbon symmetric short-chain species, diheptanoylphosphatidylcholine. Therefore, for phospholipase C, in addition to the acyl linkages, only a certain degree of hydrophobicity in the fatty acyl chains is requisite for substrate binding and appreciable hydrolysis; there is no chain specificity. The activity of phospholipase A2 from cobra venom toward the same asymmetric lecithins is quite different. As the sn-2 chain lengthens, activity is increased to a maximum for diheptanoyl-PC. Further increase in the number of carbons in the sn-2 chain has no effect on hydrolysis rates. For this enzyme, seven carbons in the sn-2 chain are necessary for optimal activity. In contrast, porcine pancreatic phospholipase A2 activity shows very little dependence on sn-2 chain length.  相似文献   

12.
N E Gabriel  M F Roberts 《Biochemistry》1986,25(10):2812-2821
Stable unilamellar vesicles formed spontaneously upon mixing aqueous suspensions of long-chain phospholipid (synthetic, saturated, and naturally occurring phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin) with small amounts of short-chain lecithin (fatty acid chain lengths of 6-8 carbons) have been characterized by using NMR spectroscopy, negative staining electron microscopy, differential scanning calorimetry, and Fourier transform infrared (FTIR) spectroscopy. This method of vesicle preparation can produce bilayer vesicles spanning the size range 100 to greater than 1000 A. The combination of short-chain lecithin and long-chain lecithin in its gel state at room temperature produces relatively small unilamellar vesicles, while using long-chain lecithin in its liquid-crystalline state produces large unilamellar vesicles. The length of the short-chain lecithin does not affect the size distribution of the vesicles as much as the ratio of short-chain to long-chain components. In general, additional short-chain decreases the average vesicle size. Incorporation of cholesterol can affect vesicle size, with the solubility limit of cholesterol in short-chain lecithin micelles governing any size change. If the amount of cholesterol is below the solubility limit of micellar short-chain lecithin, then the addition of cholesterol to the vesicle bilayer has no effect on the vesicle size; if more cholesterol is added, particle growth is observed. Vesicles formed with a saturated long-chain lecithin and short-chain species exhibit similar phase transition behavior and enthalpy values to small unilamellar vesicles of the pure long-chain lecithin prepared by sonication. As the size of the short-chain/long-chain vesicles decreases, the phase transition temperature decreases to temperatures observed for sonicated unilamellar vesicles. FTIR spectroscopy confirms that the incorporation of the short-chain lipid in the vesicle bilayer does not drastically alter the gauche bond conformation of the long-chain lipids (i.e., their transness in the gel state and the presence of multiple gauche bonds in the liquid-crystalline state).  相似文献   

13.
Dextran glucosidase from Streptococcus mutans (SMDG), an exo-type glucosidase of glycoside hydrolase (GH) family 13, specifically hydrolyzes an α-1,6-glucosidic linkage at the non-reducing ends of isomaltooligosaccharides and dextran. SMDG shows the highest sequence similarity to oligo-1,6-glucosidases (O16Gs) among GH family 13 enzymes, but these enzymes are obviously different in terms of substrate chain length specificity. SMDG efficiently hydrolyzes both short-and long-chain substrates, while O16G acts on only short-chain substrates. We focused on this difference in substrate specificity between SMDG and O16G, and elucidated the structure-function relationship of substrate chain length specificity in SMDG. Crystal structure analysis revealed that SMDG consists of three domains, A, B, and C, which are commonly found in other GH family 13 enzymes. The structural comparison between SMDG and O16G from Bacillus cereus indicated that Trp238, spanning subsites +1 and +2, and short βα loop 4, are characteristic of SMDG, and these structural elements are predicted to be important for high activity toward long-chain substrates. The substrate size preference of SMDG was kinetically analyzed using two mutants: (i) Trp238 was replaced by a smaller amino acid, alanine, asparagine or proline; and (ii) short βα loop 4 was exchanged with the corresponding loop of O16G. Mutant enzymes showed lower preference for long-chain substrates than wild-type enzyme, indicating that these structural elements are essential for the high activity toward long-chain substrates, as implied by structural analysis.  相似文献   

14.
1. Purified cow mammary gland fatty acid synthetase synthesized long-chain unesterified and short-chain esterified fatty acids. 2. A direct relationship was observed between the amount of short-chain products synthesized and the concentration of acetyl-CoA in the incubation medium. 3. The short-chain products were identified as butyryl-CoA and hexanoyl-CoA. 4. Inhibition of the terminating thioester hydrolase of the fatty acid synthetase complex with phenylmethanesulphonyl fluoride did not inhibit the synthesis of short-chain products. 5. It is suggested that the synthesis of short-chain fatty acids involves the reverse of the 'loading' reaction.  相似文献   

15.
J R Bian  M F Roberts 《Biochemistry》1990,29(34):7928-7935
Small bilayer particles form spontaneously from gel-state long-chain phospholipids such as dipalmitoylphosphatidylcholine and 0.2 mol fraction short-chain lecithins (e.g., diheptanoyl-phosphatidylcholine). When the particles are incubated at temperatures greater than the Tm of the long-chain phosphatidylcholine (PC), the particles rapidly fuse (from 90-A to greater than or equal to 5000-A radius); this transition is reversible. A possible explanation for this behavior involves patching or phase separation of the short-chain component within the gel-state particle and randomization of both lipid species above Tm. Differential scanning calorimetry, 1H T1 values of proteodiheptanoyl-PC in diheptanoyl-PC-d26/dipalmitoyl-PC-d62 matrices of varying deuterium content, solid-state 2H NMR spectroscopy as a function of temperature, and fluorescence pyrene excimer-to-monomer ratios as a function of mole fraction diheptanoyl-PC provide evidence that such phase separation must occur. These results are used to construct a phase diagram for the diheptanoyl-PC/dipalmitoyl-PC system, to propose detailed geometric models for the different lipid particles involved, and to understand phospholipase kinetics toward the different aggregates.  相似文献   

16.
Carboxylesterase was obtained from human liver in an electrophoretically homogeneous form. The monomeric molecular weight of the enzyme was 60,000 and the enzyme associated to form trimers. Purified human liver carboxylesterase was compared with human serum carboxylesterase, purified earlier. Serum carboxylesterase hydrolyzed a typical cholinesterase substrate and aryl acylamide, whereas liver carboxylesterase did not hydrolyze these compounds. Both carboxylesterases catalyzed the hydrolysis of short-chain triacylglycerols, such as tributyrin, and medium-chain monoacylglycerols, such as monocaprin, but not the hydrolysis of long-chain triacylglycerols. Serum carboxylesterase activity was inhibited by p-trimethylammoniumanilinium dichloride and neostigmine, whereas liver carboxylesterase activity was not affected by these compounds. Liver and serum carboxylesterase activities were both strongly inhibited by phenylmethylsulfonyl fluoride.  相似文献   

17.
Phospholipases A2 belong to the superfamily of proteins which hydrolyzes the sn-2 acyl groups of membrane phospholipids to release arachidonic acid and lysophospholipids. An acidic phospholipase A2 isolated from Bothrops jararacussu snake venom presents a high catalytic, platelet aggregation inhibition and hypotensive activities. This protein was crystallized in two oligomeric states: monomeric and dimeric. The crystal structures were solved at 1.79 and 1.90 angstroms resolution, respectively, for the two states. It was identified a Na+ ion at the center of Ca2+-binding site of the monomeric form. A novel dimeric conformation with the active sites exposed to the solvent was observed. Conformational states of the molecule may be due to the physicochemical conditions used in the crystallization experiments. We suggest dimeric state is one found in vivo.  相似文献   

18.
Tissue slices from lactating goat-mammary gland synthesized short (C4:0 and C6:0), medium (C8:0 and C10:0) and long-chain (C12:0 to C16:0) fatty acids in proportions similar to that found in goat milk fat. In contrast, the particle-free supernatant fraction and the purified fatty acid synthetase from this tissue synthesized predominantly short-chain and long-chain fatty acids. Terminating acyl-thioesterases of low molecular weight could not be detected in the particle-free supernatant. Addition of the microsomal fraction to the particle-free supernatant induced the synthesis of medium-chain fatty acids in proportions which were similar to those found in goat milk fat.  相似文献   

19.
The kinetics of bovine liver enoyl-CoA hydratase (EC 4.2.1.17) or crotonase with 2-trans-hexadecenoyl-CoA as a substrate were studied because different rates were obtained with two assay methods based on measurements of substrate utilization and product formation, respectively. L-3-Hydroxyhexadecanoyl-CoA, the product of the crotonase-catalyzed hydration of 2-trans-hexadecenoyl-CoA, was found to be a strong competitive inhibitor of the enzyme with a Ki of 0.35 microM. In contrast the short-chain product, L-3-hydroxybutyryl-CoA, is a weak competitive inhibitor with a Ki of 37 microM. L-3-Hydroxyhexadecanoyl-CoA is a much stronger inhibitor of crotonase than are other short-chain and long-chain intermediates of beta-oxidation and crotonase is more severely inhibited by this compound than are all beta-oxidation enzymes tested so far. Determination of true kinetic parameters for the crotonase-catalyzed hydration of long-chain substrates requires the removal of product in a coupled assay. When this was done, the Km for 2-trans-hexadecenoyl-CoA with bovine liver crotonase was found to be only 9 microM. It is suggested that under conditions of restricted beta-oxidation, when 3-hydroxyacyl-CoAs accumulate in mitochondria, the inhibition of crotonase by long-chain 3-hydroxyacyl-CoAs may limit the further degradation of medium-chain and short-chain intermediates of beta-oxidation.  相似文献   

20.
This report describes a striking temporal and spatial patterning of specific carbohydrate sequences in the developing chick embryo. By using oligosaccharide sequence-specific monoclonal antibodies as immunohistochemical reagents in conjunction with neuraminidase, it was possible to visualize the occurrence, as well as the changes in distribution, of oligosaccharides of the poly-N-acetyllactosamine series. These were (a) long-chain unbranched sequences reactive with anti-i Den, (b) long-chain branched sequences reactive with anti-I Step and (c) short-chain branched sequences reactive with anti-I Ma and (d) their sialylated forms. The salient observations with serial sections of embryos from the unincubated to the 17th stage were as follows. (1) A pronounced anteroposterior patterning appeared during neuroectodermal development, such that the long-chain unbranched and long-chain branched sequences, which were abundant on the ectoderm of the earlier stages, were replaced by short-chain branched sialo-oligosaccharides in the developing brain and anterior neural tube. (2) A striking anteroposterior and mediolateral patterning developed in the subectodermal extracellular spaces. The long-chain linear and short-chain non-sialylated sequences demarcated regions favourable for migration of the lateral plate mesoderm. (3) A distinction was made between the dorsal and ventral routes of the trunk neural crest in that the extracellular matrix of the dorsal route only was associated with long-chain linear and short-chain sialylated branched sequences. (4) A circumscribed perinotochordal distribution of the short-chain sialylated branched sequences was observed in the region of the future centra of the vertebrae. (5) An abundance of long-chain linear and long-chain sialylated branched structures was detected in primordial germ cells which permitted their identification during migration. These observations suggest that oligosaccharides of the poly-N-acetyllactosamine series may have roles as short-range, region-specific information factors during morphogenetic events that take place in the developing embryo, and they open the way to the search for recognition proteins (e.g. endogenous lectins) specific for each of these oligosaccharide structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号