首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Myristoyl-CoA:protein N-myristoyltransferase (NMT) has recently been identified as a target for antiviral and antifungal therapy. Candida albicans is a dimorphic, asexual yeast that is a major cause of systemic fungal infections in immunosuppressed humans. Metabolic labeling studies indicate that C. albicans synthesizes one principal 20-kDa N-myristoyl-protein. The single copy C. albicans NMT gene (ca-NMT1) was isolated and encodes a 451-amino acid protein that has 55% identity with Saccharomyces cerevisiae NMT. C. albicans NMT1 is able to complement the lethal phenotype of S. cerevisiae nmt1 null mutants by directing efficient acylation of the approximately 12 endogenous N-myristoylproteins produced by S. cerevisiae. C. albicans NMT was produced in Escherichia coli, a prokaryote with no endogenous NMT activity. In vitro studies of purified E. coli-derived S. cerevisiae and C. albicans NMTs revealed species-specific differences in the kinetic properties of synthetic octapeptide substrates derived from known N-myristoylproteins. Together these data indicate that C. albicans and S. cerevisiae NMTs have similar yet distinct substrate specificities which may be of therapeutic significance.  相似文献   

2.
Myristoyl-CoA:protein N-myristoyltransferase (NMT) catalyzes the cotranslational, covalent attachment of a rare fatty acid, myristic acid (C14:0), to the amino-terminal glycine residue of a number of eukaryotic proteins involved in cellular growth and signal transduction as well as several viral proteins necessary for assembly-replication. NMT has become a target for both anti-viral and anti-fungal therapy. Analysis of purified Saccharomyces cerevisiae NMT plus yeast strains with conditional lethal nmt1 mutations have provided insights about how this process is regulated in vivo. We have now defined the location of NMT in two strains of S. cerevisiae to better understand the functional and spatial relationships between this enzyme and cellular systems that generate its acyl-CoA and peptide ligands. Western blot studies using an affinity purified antibody raised in rabbits against purified S. cerevisiae NMT indicate that the acyltransferase represents 0.06% of total cellular proteins in an exponentially growing haploid strain with a wild type NMT1 allele. Another strain containing a single, integrated copy of a GAL1/NMT1 fusion gene and a nmt1 null allele had 12-fold higher levels of NMT when grown on galactose-containing media. This increase in NMT production had no detectable effects on growth or cellular morphology. Cell fractionation studies, confocal fluorescence immunocytochemical analysis, and immunogold electron microscopic surveys of fixed, gelatin-embedded cryosections of both strains revealed that NMT is a cytosolic protein that is not associated with cellular membranes (including the endoplasmic reticulum and plasma membrane), the nucleus, mitochondria, Golgi apparatus, or vacuoles. This finding is discussed in light of what is known about the location and activities of enzymes involved in de novo fatty acid biosynthesis and in amino-terminal processing of nascent proteins.  相似文献   

3.
The determination of the bound solution conformation of D-gluco-dihydroacarbose (GAC), a tight-binding inhibitor of several glycosidase and amylase enzymes, by glucoamylase is described. Transferred NOE NMR experiments and line-broadening effects indicate that GAC is bound in a conformation resembling that observed in the crystal structure. This contrasts with the predominant conformation of GAC when free in solution. The NMR results also suggest regions on the carbohydrate that are in close contact with the protein. The determination of the bound solution conformation of GAC by glucoamylase using transferred NOE (trNOE) measurements is a significant achievement given the high affinity constant (Ka = 3 x 10(7) M(-1)) for this receptor-ligand pair. It is striking that the off-rate for complexation is still sufficiently high to permit observation of trNOEs.  相似文献   

4.
Candida albicans is the most common and virulent fungus causing candidiasis in various parts of the body and can be lethal to immunocompromised patients. All currently known antifungal therapies are drugs which cause serious side effects in the host. An inhibitor specific for fungus survival is an ideal therapeutic. C. albicans MPS1 (monopolar spindle 1) has been reported as a kinase essential to its survival. Because CaMps1p shares limited sequence homology with the human ortholog (hMps1p), we screened for a chemical inhibitor in anticipation of finding one with Candida specific cytotoxicity. In vitro screening using a recombinant catalytic domain of CaMps1p identified LY83583 (6-anilino-5,8-quinolinedione), known as a guanylate cyclase inhibitor, to be blocking CaMps1p kinase activity. In addition to its in vitro kinase inhibition, LY83583 reduced the growth rate of C. albicans. Finally, we compared the inhibitory activity on CaMps1p and hMps1p among inhibitors against those kinases. LY83583 showed specific inhibition for CaMps1p with no effect on hMps1p activity. Conversely, the CaMps1p activity was not affected by known hMps1p inhibitors. These findings suggest that CaMps1p may well be an ideal target molecule for antifungal therapy.  相似文献   

5.
In an earlier paper, it was shown that the cross-saturation method enables us to identify the contact residues of large protein complexes in a more rigorous manner than is possible using chemical shift perturbation and hydrogen-deuterium exchange experiments. However, there are limitations within the determination of the contact residues by the cross-saturation method, in that the method is difficult to apply to protein complexes with a molecular mass over 150 kDa and/or with weak binding, since the resonances originating from the complexes should be observed directly in the method. In the present work, to overcome these limitations, we carried out the cross-saturation measurements under conditions of a fast exchange between free and bound states on the NMR time-scale, and determined the contact residues of the complex of the B domain of protein A and intact IgG, which has a molecular mass of 164 kDa and shows weak binding.  相似文献   

6.
A dual plasmid system was used to examine the protein and acyl-CoA specificities of Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase (NMT) by co-expressing it in Escherichia coli with each of four homologous alpha subunits of the signal-transducing, heterotrimeric G proteins. Exogenous [3H]myristate was incorporated into rat Gi alpha 1 and rat Go alpha but not into bovine Gs alpha or human Gz alpha. Oxygen for methylene group substitutions in myristate result in analogs with comparable chain length and stereochemistry but marked reductions in hydrophobicity. Metabolic labeling studies with 6-, 11-, or 13-[3H]oxatetradecanoic acid indicated that they were incorporated into rat Gi alpha 1 and Go alpha with an efficiency that could be correlated with their accumulation into E. coli and their interactions with purified NMT in vitro. Octapeptides derived from the NH2-terminal sequences of these four G alpha polypeptides were tested as substrates for purified S. cerevisiae NMT. None were bound by the enzyme. Acidic residues at positions 7 and 8 appear to contribute to this effect; deletion of these two amino acids or addition of the next 9 residues of rat Go alpha produced active substrates. These results imply that productive interactions between NMT and G alpha protein substrates in vivo require structural features that are not fully represented within their NH2-terminal 8 residues.  相似文献   

7.
A 16-residue synthetic peptide corresponding to the N-terminal sequence of p60src was used as the acyl acceptor in an assay for myristoyl-CoA:glycylpeptide N-myristoyltransferase in rat tissues. An additional C-terminal tyrosine amide was added to this peptide to facilitate radioiodination and enhance detectability. Reverse-phase h.p.l.c. enabled the simultaneous detection and quantification of the peptide substrate and its N-myristoylated product. N-Myristoyltransferase activity was highest in the brain with decreasing activities in lung, small intestine, kidney, heart, skeletal muscle and liver. Brain activity was distributed approximately equally between the 100,000 g pellet and supernatant fractions. The soluble enzyme exhibited a Kappm of 20 microM for the src peptide and an optimum between pH 7.0 and 7.5. Maximum N-acylating activity was seen with myristoyl (C14:0)-CoA with lower activities found with the C10:0-CoA and C12:0-CoA homologues. No activity was obtained with palmitoyl (C18:0)-CoA but this derivative inhibited N-myristoyltransferase activity greater than 50% at equimolar concentrations with myristoyl-CoA. With a decapeptide corresponding to the N-terminal sequence of the cyclic AMP-dependent protein kinase catalytic subunit as the acyl acceptor, the brain enzyme displayed a Kapp.m of 117 microM and was about 14-fold less catalytically effective than with the p60src acyl acceptor. Transferase activity was also seen with a 16-residue peptide corresponding to the N-terminal sequence of the HIV p17gag structural protein. Inhibition studies with shorter src peptide analogues indicated an enzyme specificity for the p60src acyl acceptor beyond 9 residues.  相似文献   

8.
Kinesins from the bipolar (Kinesin-5) family are conserved in eukaryotic organisms and play critical roles during the earliest stages of mitosis to mediate spindle pole body separation and formation of a bipolar mitotic spindle. To date, genes encoding bipolar kinesins have been reported to be essential in all organisms studied. We report the characterization of CaKip1p, the sole member of this family in the human pathogenic yeast Candida albicans. C. albicans Kip1p appears to localize to the mitotic spindle and loss of CaKip1p function interferes with normal progression through mitosis. Inducible excision of CaKIP1 revealed phenotypes unique to C. albicans, including viable homozygous Cakip1 mutants and an aberrant spindle morphology in which multiple spindle poles accumulate in close proximity to each other. Expression of the C. albicans Kip1 motor domain in Escherichia coli produced a protein with microtubule-stimulated ATPase activity that was inhibited by an aminobenzothiazole (ABT) compound in an ATP-competitive fashion. This inhibition results in 'rigor-like', tight association with microtubules in vitro. Upon treatment of C. albicans cells with the ABT compound, cells were killed, and terminal phenotype analysis revealed an aberrant spindle morphology similar to that induced by loss of the CaKIP1 gene. The ABT compound discovered is the first example of a fungal spindle inhibitor targeted to a mitotic kinesin. Our results also show that the non-essential nature and implementation of the bipolar motor in C. albicans differs from that seen in other organisms, and suggest that inhibitors of a non-essential mitotic kinesin may offer promise as cidal agents for antifungal drug discovery.  相似文献   

9.
An IMP dehydrogenase gene was isolated from Candida albicans on a approximately 2.9-kb XbaI genomic DNA fragment. The putative Candida IMP dehydrogenase gene (IMH3) encodes a protein of 521 amino acids with extensive sequence similarity to the IMP dehydrogenases of Saccharomyces cerevisiae and various other organisms. Like the S. cerevisiae IMH3 sequence characterized in the genome sequencing project, the open reading frame of the C. albicans IMH3 gene is interrupted by a small intron (248 bp) with typical exon-intron boundaries and a consensus S. cerevisiae branchpoint sequence. IMP dehydrogenase mRNAs are detected in both the yeast and hyphal forms of C. albicans as judged by Northern hybridization. Growth of wild-type (sensitive) C. albicans cells is inhibited at 1 microg of mycophenolic acid (MPA), a specific inhibitor of IMP dehydrogenases, per ml, whereas transformants hosting a plasmid with the IMH3 gene are resistant to MPA levels of up to at least 40 microg/ml. The resistance of cells to MPA is gene dosage dependent and suggests that IMH3 can be used as a dominant selection marker in C. albicans.  相似文献   

10.
Abstract

Glycyrrhiza glabra L. is considered an important source of bioactive compounds. This study aimed at the development of an efficient solution for the treatment of oral candidiasis. Several extracts of Glycyrrhiza glabra L. were prepared using different solvents and their potential in vitro antifungal activity was assessed. Ethanolic extracts showed the most promising results against C. albicans. This extract was incorporated into mucoadhesive nanoparticles (PLA, PLGA and alginate), which were further included in an oral gel, an oral film and a toothpaste, respectively. The results showed that nanoparticles were successfully produced, presenting a mean size among 100–900?nm with high encapsulation efficiency. In vitro studies showed that the most bioadhesive formulation was the oral film with extract-loaded PLGA nanoparticles, followed by the toothpaste with extract-loaded alginate nanoparticles and the oral gel with extract-loaded PLA nanoparticles.  相似文献   

11.
12.
The effect of a lipopeptide antifungal agent, cilofungin, on serum opsonization and phagocytosis of Candida albicans yeast phase cells in human neutrophil monolayer assays was investigated. Simultaneous addition of fungicidal concentrations of cilofungin did not enhance or inhibit phagocytosis of C. albicans. Pretreatment of Candida blastospores with cilofungin in the absence of serum complement for 1 h did not affect phagocytosis. However, pretreatment of blastospores with cilofungin and complement promoted a significant increase in ingestion. Pretreatment of neutrophils with cilofungin in serum-free media did not affect neutrophil viability. In contrast, pre-exposure of neutrophils to cilofungin in the presence of complement inhibited ingestion of blastospores.  相似文献   

13.
14.
Mitochondrial membranes reconstituted from lipid-depleted mitochondria and aqueous phospholipid dispersions still have the phospholipid negative charges available for ionic interaction with the basic protein, lysozyme. The stoichiometry of the binding is of about 6 nmoles of lysozyme per 100 nmoles of phospholipid in membranes reconstituted with Asolectin, and of 10 nmoles of phospholipid phosphorus in membranes reconstituted with cardiolipin. Unextracted submitochondrial particles ETP also bind lysozyme (about 3 nmoles per 100 nmoles of phospholipid). These observations indicate that the phospholipid anionic groups are not completely shielded by the mitochondrial proteins, which might occupy areas between the nonpolar groups of the lipid molecules.  相似文献   

15.
Two antibiotic resistance peptides, the E-peptide (MRLFV) and the K-peptide (MRFFV) conferring macrolide and ketolide resistance, respectively, were studied in the complex state with bacterial Staphylococcus aureus ribosomes. Interactions of antibiotic resistance peptides with ribosomes were investigated using two-dimensional transferred nuclear Overhauser effect spectroscopy (TRNOESY), suggesting that the peptide-ribosome interaction was associated with the low-affinity binding level. K-Peptide displayed a significantly better response in TRNOEs NMR experiments, in agreement with a better overall antibiotic activity of ketolides. This difference highlights a mimetic effect displayed by the E- and K-peptides. This study shows that conformation plays an essential role for the affinity binding site and, thus, for the resistance mechanism. Specific conformations were preferred in the bound state; their superimposition exhibited a similar cyclic peptidyl chain, while the side chain region varies. The F4 phenyl moiety in E-peptide has moved out of the turn region compared to its folding in the ketolide resistance peptide. In the K-peptide binding surface, the F4 aromatic chain is maintained by stacking with the guanidyl group of the R2 residue providing a particular hydrophobic and globular fragment, which may be important for the ketolide resistance peptide mode of action. Additionally, T(2) (CPMG) measurements were used to characterize equilibrium binding of antibiotic resistance peptides to bacterial ribosomes. The results bring to the fore E- and K-peptide competition with antibiotics for binding to the ribosomes. Their specific interaction and their competitive effects reveal a novel aspect of interaction of resistance peptides with ribosomes and suggest new insights about their mode of action. The resistance mechanism may imply two steps, a competitive effect of the resistance peptide for the macrolide (or ketolide) binding site followed by a "bottle brush" effect in which the drug and the peptide are driven out their binding site on the ribosome.  相似文献   

16.
A soluble mannose binding protein (MBP), obtained from rabbit serum, was found to inhibit phagocytosis of Candida albicans by bone marrow derived, cultured murine macrophages. During in vitro incubation of yeast with lymphocyte-free macrophage populations uptake of the yeast was significantly reduced at MBP concentrations of 5 micrograms/ml. A similar reduction in yeast phagocytosis was produced by dextrose, d-fucose, l-fucose, d-mannose and alpha-methyl-d-mannoside but required saccharide concentrations of 25-50 mg/ml. Inhibition of phagocytosis of the yeast also resulted from pretreatment of either the macrophages or the yeasts with MBP followed by washing. As expected, the addition of mannan to the assay medium blocked the inhibitory effect of MBP for uptake of C. albicans. These findings suggest that both cell bound and soluble mannose receptors may be important modulators of macrophage-Candida interactions.  相似文献   

17.
Accurate diagnosis is critical for effective treatment of the invasive infection by Candida albicans. Here, we investigated whether a 99m technetium (Tc)-labeled Fab’ fragment of the monoclonal antibody specific for the C. albicans germ tube could specifically identify an invasive C. albicans infection. The germ tube of C. albicans was used as an immunogen to obtain monoclonal antibodies and the Fab’ fragment of MAb03.2 C1–C2 with highest affinity and specificity was labeled with 99mTc. In vitro binding assays showed that the labeled Fab’ preferentially bound to the germ tubes of C. albicans (4.23 ± 0.17 × 102 Bq per 1 × 107 cells). These values were significantly higher than those for blastospores of C. albicans, blastospores of heat-killed C. albicans, Aspergillus fumigatus, Staphylococcus aureus, and Escherichia coli (P < 0.05). By using in vivo biodistribution and planar imaging with single photon emission computed tomography, we demonstrated a significant specific accumulation of radioactivity in C. albicans-infected tissues. In summary, 99mTc-MAb03.2 C1–C2 Fab’ is able to specifically accumulate in C. albicans-infected tissues, but not in tissue infected with A. fumigatus or bacteria or in a sterile inflammation. This study provides a new and specific radiopharmaceutical for the diagnosis of invasive C. albicans infections.  相似文献   

18.
AIMS: To study the interactions between Candida albicans and 12 other species of Candida and bacteria in biofilms. METHODS AND RESULTS: The number of cells within growing biofilms in a polystyrene tube model was measured after adding C. albicans to preformed biofilms of other micro-organisms and vice versa. It was also measured after simultaneous biofilm formation of C. albicans and other micro-organisms. The number of cells of C. albicans within the growing biofilms decreased significantly (P < 0.05) when the fungus was added to preformed biofilms of Candida spp. and bacteria except, with C. parapsilosis, Torulopsis glabrata and the glycocalyx producer Pseudomonas aeruginosa. When C. parapsilosis, Staphylococcus epidermidis (nonglycocalyx producer) or Serratia marcescens was added to preformed biofilms of C. albicans, the number of cells of these micro-organisms increased in the growing biofilms. CONCLUSIONS: Biofilms of C. albicans are capable of holding other micro-organisms and more likely to be heterogeneous with other bacteria and fungi in the environment and on medical devices. SIGNIFICANCE AND IMPACT OF THE STUDY: Recognition of the heterogeneity of biofilm-associated organisms can influence treatment decisions, particularly in patients who do not respond to initial appropriate therapy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号