首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prototype JHM strain of murine hepatitis virus (MHV) is an enveloped, RNA-containing coronavirus that has been selected in vivo for extreme neurovirulence. This virus encodes spike (S) glycoproteins that are extraordinarily effective mediators of intercellular membrane fusion, unique in their ability to initiate fusion even without prior interaction with the primary MHV receptor, a murine carcinoembryonic antigen-related cell adhesion molecule (CEACAM). In considering the possible role of this hyperactive membrane fusion activity in neurovirulence, we discovered that the growth of JHM in tissue culture selected for variants that had lost murine CEACAM-independent fusion activity. Among the collection of variants, mutations were identified in regions encoding both the receptor-binding (S1) and fusion-inducing (S2) subunits of the spike protein. Each mutation was separately introduced into cDNA encoding the prototype JHM spike, and the set of cDNAs was expressed using vaccinia virus vectors. The variant spikes were similar to that of JHM in their assembly into oligomers, their proteolysis into S1 and S2 cleavage products, their transport to cell surfaces, and their affinity for a soluble form of murine CEACAM. However, these tissue culture-adapted spikes were significantly stabilized as S1-S2 heteromers, and their entirely CEACAM-dependent fusion activity was delayed or reduced relative to prototype JHM spikes. The mutations that we have identified therefore point to regions of the S protein that specifically regulate the membrane fusion reaction. We suggest that cultured cells, unlike certain in vivo environments, select for S proteins with delayed, CEACAM-dependent fusion activities that may increase the likelihood of virus internalization prior to the irreversible uncoating process.  相似文献   

2.
Murine hepatitis virus (MHV), a coronavirus, initiates infection by binding to its cellular receptor (MHVR) via spike (S) proteins projecting from the virion membrane. The structures of these S proteins vary considerably among MHV strains, and this variation is generally considered to be important in determining the strain-specific pathologies of MHV infection, perhaps by affecting the interaction between MHV and the MHVR. To address the relationships between S variation and receptor binding, assays capable of measuring interactions between MHV and MHVR were developed. The assays made use of a novel soluble form of the MHVR, sMHVR-Ig, which comprised the virus-binding immunoglobulin-like domain of MHVR fused to the Fc portion of human immunoglobulin G1. sMHVR-Ig was stably expressed as a disulfide-linked dimer in human 293 EBNA cells and was immobilized to Sepharose-protein G via the Fc domain. The resulting Sepharose beads were used to adsorb radiolabelled MHV particles. At 4 degrees C, the beads specifically adsorbed two prototype MHV strains, MHV JHM (strain 4) and a tissue culture-adapted mutant of MHV JHM, the JHMX strain. A shift to 37 degrees C resulted in elution of JHM but not JHMX. This in vitro observation of JHM (but not JHMX) elution from its receptor at 37 degrees C was paralleled by a corresponding 37 degrees C elution of receptor-associated JHM (but not JHMX) from tissue culture cells. The basis for this difference in maintenance of receptor association was correlated with a large deletion mutation present within the JHMX S protein, as sMHVR-Ig exhibited relatively thermostable binding to vaccinia virus-expressed S proteins containing the deletion. These results indicate that naturally occurring mutations in the coronavirus S protein affect the stability of the initial interaction with the host cell and thus contribute to the likelihood of successful infection by incoming virions. These changes in virus entry features may result in coronaviruses with novel pathogenic properties.  相似文献   

3.
The immunodominant CD8+ T-cell epitope of a highly neurovirulent strain of mouse hepatitis virus (MHV), JHM, is thought to be essential for protection against virus persistence within the central nervous system. To test whether abrogation of this H-2Db-restricted epitope, located within the spike glycoprotein at residues S510 to 518 (S510), resulted in delayed virus clearance and/or virus persistence we selected isogenic recombinants which express either the wild-type JHM spike protein (RJHM) or spike containing the N514S mutation (RJHM(N514S)), which abrogates the response to S510. In contrast to observations in suckling mice in which viruses encoding inactivating mutations within the S510 epitope (epitope escape mutants) were associated with persistent virus and increased neurovirulence (Pewe et al., J Virol. 72:5912-5918, 1998), RJHM(N514S) was not more virulent than the parental, RJHM, in 4-week-old C57BL/6 (H-2b) mice after intracranial injection. Recombinant viruses expressing the JHM spike, wild type or encoding the N514S substitution, were also selected in which background genes were derived from the neuroattenuated A59 strain of MHV. Whereas recombinants expressing the wild-type JHM spike (SJHM/RA59) were highly neurovirulent, A59 recombinants containing the N514S mutation (SJHM(N514S)/RA59) were attenuated, replicated less efficiently, and exhibited reduced virus spread in the brain at 5 days postinfection (peak of infectious virus titers in the central nervous system) compared to parental virus encoding wild-type spike. Virulence assays in BALB/c mice (H-2d), which do not recognize the S510 epitope, revealed that attenuation of the epitope escape mutants was not due to the loss of a pathogenic immune response directed against the S510 epitope. Thus, an intact immunodominant S510 epitope is not essential for virus clearance from the CNS, the S510 inactivating mutation results in decreased virulence in weanling mice but not in suckling mice, suggesting that specific host conditions are required for epitope escape mutants to display increased virulence, and the N514S mutation causes increased attenuation in the context of A59 background genes, demonstrating that genes other than that for the spike are also important in determining neurovirulence.  相似文献   

4.
Choi KS  Aizaki H  Lai MM 《Journal of virology》2005,79(15):9862-9871
Thorp and Gallagher first reported that depletion of cholesterol inhibited virus entry and cell-cell fusion of mouse hepatitis virus (MHV), suggesting the importance of lipid rafts in MHV replication (E. B. Thorp and T. M. Gallagher, J. Virol. 78:2682-2692, 2004). However, the MHV receptor is not present in lipid rafts, and anchoring of the MHV receptor to lipid rafts did not enhance MHV infection; thus, the mechanism of lipid rafts involvement is not clear. In this study, we defined the mechanism and extent of lipid raft involvement in MHV replication. We showed that cholesterol depletion by methyl beta-cyclodextrin or filipin did not affect virus binding but reduced virus entry. Furthermore, MHV spike protein bound to nonraftraft membrane at 4 degrees C but shifted to lipid rafts at 37 degrees C, indicating a redistribution of membrane following virus binding. Thus, the lipid raft involvement in MHV entry occurs at a step following virus binding. We also found that the viral spike protein in the plasma membrane of the infected cells was associated with lipid rafts, whereas that in the Golgi membrane, where MHV matures, was not. Moreover, the buoyant density of the virion was not changed when MHV was produced from the cholesterol-depleted cells, suggesting that MHV does not incorporate lipid rafts into the virion. These results indicate that MHV release does not involve lipid rafts. However, MHV spike protein has an inherent ability to associate with lipid rafts. Correspondingly, cell-cell fusion induced by MHV was retarded by cholesterol depletion, consistent with the association of the spike protein with lipid rafts in the plasma membrane. These findings suggest that MHV entry requires specific interactions between the spike protein and lipid rafts, probably during the virus internalization step.  相似文献   

5.
Most strains of murine coronavirus mouse hepatitis virus (MHV) express a cleavable spike glycoprotein that mediates viral entry and pH-independent cell-cell fusion. The MHV type 2 (MHV-2) strain of murine coronavirus differs from other strains in that it expresses an uncleaved spike and cannot induce cell-cell fusion at neutral pH values. We show here that while infection of the prototype MHV-A59 strain is not sensitive to pretreatment with lysosomotropic agents, MHV-2 replication is significantly inhibited by these agents. By use of an A59/MHV-2 chimeric virus, the susceptibility to lysosomotropic agents is mapped to the MHV-2 spike, suggesting a requirement of acidification of endosomes for MHV-2 spike-mediated entry. However, acidification is likely not a direct trigger for MHV-2 spike-mediated membrane fusion, as low-pH treatment is unable to overcome ammonium chloride inhibition, and it also cannot induce cell-cell fusion between MHV-2-infected cells. In contrast, trypsin treatment can both overcome ammonium chloride inhibition and promote cell-cell fusion. Inhibitors of the endosomal cysteine proteases cathepsin B and cathepsin L greatly reduce MHV-2 spike-mediated entry, while they have little effect on A59 entry, suggesting that there is a proteolytic step in MHV-2 entry. Finally, a recombinant virus expressing a cleaved MHV-2 spike has the ability to induce cell-cell fusion at neutral pH values and does not require low pH and endosomal cathepsins during infection. These studies demonstrate that endosomal proteolysis by cathepsins is necessary for MHV-2 spike-mediated entry; this is similar to the entry pathway recently described for severe acute respiratory syndrome coronavirus and indicates that coronaviruses may use multiple pathways for entry.  相似文献   

6.
Iacono KT  Kazi L  Weiss SR 《Journal of virology》2006,80(14):6834-6843
Various strains of mouse hepatitis virus (MHV) exhibit different pathogenic phenotypes. Infection with the A59 strain of MHV induces both encephalitis and hepatitis, while the highly neurovirulent JHM strain induces a fatal encephalitis with little, if any, hepatitis. The pathogenic phenotype for each strain is determined by the genetic composition of the viral genome, as well as the host immune response. Using isogenic recombinant viruses with A59 background genes differing only in the spike gene, we have previously shown that high neurovirulence is associated with the JHM spike protein, the protein responsible for attachment to the host cell receptor (J. J. Phillips, M. M. Chua, G. F. Rall, and S. R. Weiss, Virology 301:109-120, 2002). Using another set of isogenic recombinant viruses with JHM background genes expressing either the JHM or A59 spike, we have further investigated the roles of viral genes in pathogenesis. Here, we demonstrate that the high neurovirulence of JHM is associated with accelerated spread through the brain and a heightened innate immune response that is characterized by high numbers of infiltrating neutrophils and macrophages, suggesting an immunopathogenic component to neurovirulence. While expression of the JHM spike is sufficient to confer a neurovirulent phenotype, as well as increased macrophage infiltration, background genes contribute to virulence as well, at least in part, by dictating the extent of the T-cell immune response.  相似文献   

7.
Murine hepatitis virus (MHV) infection provides a model system for the study of hepatitis, acute encephalitis, and chronic demyelinating disease. The spike glycoprotein, S, which mediates receptor binding and membrane fusion, plays a critical role in MHV pathogenesis. However, viral proteins other than S also contribute to pathogenicity. The JHM strain of MHV is highly neurovirulent and expresses a second spike glycoprotein, the hemagglutinin esterase (HE), which is not produced by MHV-A59, a hepatotropic but only mildly neurovirulent strain. To investigate a possible role for HE in MHV-induced neurovirulence, isogenic recombinant MHV-A59 viruses were generated that produced either (i) the wild-type protein, (ii) an enzymatically inactive HE protein, or (iii) no HE at all (A. Lissenberg, M. M. Vrolijk, A. L. W. van Vliet, M. A. Langereis, J. D. F. de Groot-Mijnes, P. J. M. Rottier, and R. J. de Groot, J. Virol. 79:15054-15063, 2005 [accompanying paper]). A second, mirror set of recombinant viruses was constructed in which, in addition, the MHV-A59 S gene had been replaced with that from MHV-JHM. The expression of HE in combination with A59 S did not affect the tropism, pathogenicity, or spread of the virus in vivo. However, in combination with JHM S, the expression of HE, regardless of whether it retained esterase activity or not, resulted in increased viral spread within the central nervous system and in increased neurovirulence. Our findings suggest that the properties of S receptor utilization and/or fusogenicity mainly determine organ and host cell tropism but that HE enhances the efficiency of infection and promotes viral dissemination, at least in some tissues, presumably by serving as a second receptor-binding protein.  相似文献   

8.
K Yokomori  M M Lai 《Journal of virology》1992,66(12):6931-6938
The SJL mouse strain is resistant to infection by some strains of the murine coronavirus mouse hepatitis virus (MHV), such as JHM and A59. The block to virus infection has been variously attributed to defects in virus receptors or virus spread. Since the cellular receptors for MHV, mmCGM1 and mmCGM2, have recently been identified as members of the carcinoembryonic antigen family, we reexamined the possible defectiveness of the MHV receptors in SJL mouse strain. Cloning and sequencing of the cDNAs of both mmCGMs RNAs from SJL mice revealed that they were identical in size to those of the susceptible C57BL/6 (B6) mouse. There was some sequence divergence in the N terminus of the mmCGM molecules between the two mouse strains, resulting in a different number of potential glycosylation sites. This was confirmed by in vitro translation of the mmCGM RNAs, which showed that the glycosylated mmCGM2 of SJL was smaller than that of B6 mice. However, transfection of either mmCGM1 or mmCGM2 from SJL mice into MHV-resistant Cos 7 cells rendered the cells susceptible to MHV infection. The ability of the SJL mmCGM molecules to serve as MHV receptors was comparable to that of those from B6. These molecules are expressed in SJL mouse brain and liver in a similar ratio and in amounts equivalent to those in the B6 mouse. Furthermore, we demonstrated that an SJL-derived cell line was susceptible to A59 but resistant to JHM infection. We concluded that the MHV receptor molecules in the SJL mouse are functional and that the resistance of SJL mice to infection by some MHV strains most likely results from some other factor(s) required for virus entry or some other step(s) in virus replication.  相似文献   

9.
The spike glycoprotein (S) of the murine coronavirus mouse hepatitis virus (MHV) binds to viral murine CEACAM receptor glycoproteins and causes membrane fusion. On virions, the 180-kDa S glycoprotein of the MHV-A59 strain can be cleaved by trypsin to form the 90-kDa N-terminal receptor-binding subunit (S1) and the 90-kDa membrane-anchored fusion subunit (S2). Incubation of virions with purified, soluble CEACAM1a receptor proteins at 37 degrees C and pH 6.5 neutralizes virus infectivity (B. D. Zelus, D. R. Wessner, R. K. Williams, M. N. Pensiero, F. T. Phibbs, M. deSouza, G. S. Dveksler, and K. V. Holmes, J. Virol. 72:7237-7244, 1998). We used liposome flotation and protease sensitivity assays to investigate the mechanism of receptor-induced, temperature-dependent virus neutralization. After incubation with soluble receptor at 37 degrees C and pH 6.5, virions became hydrophobic and bound to liposomes. Receptor binding induced a profound, apparently irreversible conformational change in S on the viral envelope that allowed S2, but not S1, to be degraded by trypsin at 4 degrees C. Various murine CEACAM proteins triggered conformational changes in S on recombinant MHV strains expressing S glycoproteins of MHV-A59 or MHV-4 (MHV-JHM) with the same specificities as seen for virus neutralization and virus-receptor activities. Increased hydrophobicity of virions and conformational change in S2 of MHV-A59 could also be induced by incubating virions at pH 8 and 37 degrees C, without soluble receptor. Surprisingly, the S protein of recombinant MHV-A59 virions with a mutation, H716D, that precluded cleavage between S1 and S2 could also be triggered to undergo a conformational change at 37 degrees C by soluble receptor at neutral pH or by pH 8 alone. A novel 120-kDa subunit was formed following incubation of the receptor-triggered S(A59)H716D virions with trypsin at 4 degrees C. The data show that unlike class 1 fusion glycoproteins of other enveloped viruses, the murine coronavirus S protein can be triggered to a membrane-binding conformation at 37 degrees C either by soluble receptor at neutral pH or by alkaline pH alone, without requiring previous activation by cleavage between S1 and S2.  相似文献   

10.
In addition to the spike (S) glycoprotein that binds to carcinoembryonic antigen-related receptors on the host cell membrane, some strains of mouse coronavirus (mouse hepatitis virus [MHV]) express a hemagglutinin esterase (HE) glycoprotein with hemagglutinating and acetylesterase activity. Virions of strains that do not express HE, such as MHV-A59, can infect mouse fibroblasts in vitro, showing that the HE glycoprotein is not required for infection of these cells. The present work was done to study whether interaction of the HE glycoprotein with carbohydrate moieties could lead to virus entry and infection in the absence of interaction of the S glycoprotein with its receptor glycoprotein, MHVR. The DVIM strain of MHV expresses large amounts of HE glycoprotein, as shown by hemadsorption, acetylesterase activity, and immunoreactivity with antibodies directed against the HE glycoprotein of bovine coronavirus. A monoclonal anti-MHVR antibody, MAb-CC1, blocks binding of virus S glycoprotein to MHVR and blocks infection of MHV strains that do not express HE. MAb-CC1 also prevented MHV-DVIM infection of mouse DBT cells and primary mouse glial cell cultures. Although MDCK-I cells express O-acetylated sialic acid residues on their plasma membranes, these canine cells were resistant to infection with MHV-A59 and MHV-DVIM. Transfection of MDCK-I cells with MHVR cDNA made them susceptible to infection with MHV-A59 and MHV-DVIM. Thus, the HE glycoprotein of an MHV strain did not lead to infection of cultured murine neural cells or of nonmurine cells that express the carbohydrate ligand of the HE glycoprotein. Therefore, interaction of the spike glycoprotein of MHV with its carcinoembryonic antigen-related receptor glycoprotein is required for infectivity of MHV strains whether or not they express the HE glycoprotein.  相似文献   

11.
Unlike other class I viral fusion proteins, spike proteins on severe acute respiratory syndrome coronavirus virions are uncleaved. As we and others have demonstrated, infection by this virus depends on cathepsin proteases present in endosomal compartments of the target cell, suggesting that the spike protein acquires its fusion competence by cleavage during cell entry rather than during virion biogenesis. Here we demonstrate that cathepsin L indeed activates the membrane fusion function of the spike protein. Moreover, cleavage was mapped to the same region where, in coronaviruses carrying furin-activated spikes, the receptor binding subunit of the protein is separated from the membrane-anchored fusion subunit.  相似文献   

12.
Navas S  Weiss SR 《Journal of virology》2003,77(8):4972-4978
Recombinant murine coronaviruses, differing only in the spike gene and containing the strain A59 (moderately hepatotropic) and JHM (neurotropic) spike genes in the background of the JHM genome, were compared for the ability to replicate in the liver and induce hepatitis in weanling C57BL/6 mice. Interestingly, expression of the A59 spike glycoprotein within the background of the neurotropic JHM strain does not reproduce the A59 hepatotropic phenotype. Thus, the JHM genetic background plays a dominant role over the spike in the determination of hepatotropism.  相似文献   

13.
The important roles of the spike protein and other structural proteins in murine coronavirus (MHV) pathogenesis have been demonstrated; however, the role of the replicase gene remains unexplored. We assessed the influence of the replicase genes of the highly neurovirulent MHV-JHM strain and the hepatotropic and mildly neurovirulent A59 strain in acute infection of the mouse. Analysis of chimeric A59/JHM recombinant viruses indicates that the replicase genes are interchangeable and that it is the 3′ end of the genome, encoding the structural proteins, rather than the replicase gene, that determines the pathogenic properties of these chimeras.  相似文献   

14.
Using isogenic recombinant murine coronaviruses expressing wild-type murine hepatitis virus strain 4 (MHV-4) or MHV-A59 spike glycoproteins or chimeric MHV-4/MHV-A59 spike glycoproteins, we have demonstrated the biological functionality of the N-terminus of the spike, encompassing the receptor binding domain (RBD). We have used two assays, one an in vitro liposome binding assay and the other a tissue culture replication assay. The liposome binding assay shows that interaction of the receptor with spikes on virions at 37 degrees C causes a conformational change that makes the virions hydrophobic so that they bind to liposomes (B. D. Zelus, J. H. Schickli, D. M. Blau, S. R. Weiss, and K. V. Holmes, J. Virol. 77: 830-840, 2003). Recombinant viruses with spikes containing the RBD of either MHV-A59 or MHV-4 readily associated with liposomes at 37 degrees C in the presence of soluble mCEACAM1(a), except for S(4)R, which expresses the entire wild-type MHV-4 spike and associated only inefficiently with liposomes following incubation with soluble mCEACAM1(a). In contrast, soluble mCEACAM1(b) allowed viruses with the MHV-A59 RBD to associate with liposomes more efficiently than did viruses with the MHV-4 RBD. In the second assay, which requires virus entry and replication, all recombinant viruses replicated efficiently in BHK cells expressing mCEACAM1(a). In BHK cells expressing mCEACAM1(b), only viruses expressing chimeric spikes with the MHV-A59 RBD could replicate, while replication of viruses expressing chimeric spikes with the MHV-4 RBD was undetectable. Despite having the MHV-4 RBD, S(4)R replicated in BHK cells expressing mCEACAM1(b); this is most probably due to spread via CEACAM1 receptor-independent cell-to-cell fusion, an activity displayed only by S(4)R among the recombinant viruses studied here. These data suggest that the RBD domain and the rest of the spike must coevolve to optimize function in viral entry and spread.  相似文献   

15.
The spike glycoproteins of Semliki Forest virus mediate membrane fusion between the viral envelope and cholesterol-containing target membranes under conditions of mildly acidic pH (pH less than 6.2). The fusion reaction is critical for the infectious cycle, catalyzing virus penetration from the acidic endosome compartment. To define the role of the viral spike glycoproteins in the fusion reaction, conformational changes in the spikes at acid pH were studied using protease digestion and binding assays to liposomes and nonionic detergent. A method was also developed to prepare fragments of both transmembrane subunit glycopolypeptides of the spike, E1 and E2, which lacked the hydrophobic anchor peptides. Unlike the intact spikes the fragments were monomeric and therefore useful for obtaining information on conformational changes in individual subunits. The results showed that both E1 and E2 undergo irreversible conformational changes at the pH of fusion, that the conformational change of E1 depends, in addition to acidic pH, on the presence of cholesterol, and that no major changes in the solubility properties of the spikes takes place. On the basis of these findings it was concluded that fusion involves both subunits of the spike and that E1 confers the stereo-specific sterol requirement. The results indicated, moreover, that acid-induced fusion of Semliki Forest virus differs in important respects from that of influenza virus, another well-defined model system for protein-mediated membrane fusion.  相似文献   

16.
17.
18.
Y N Kim  S Makino 《Journal of virology》1995,69(8):4963-4971
The mouse hepatitis virus (MHV) sequences required for replication of the JHM strain of MHV defective interfering (DI) RNA consist of three discontinuous genomic regions: about 0.47 kb from both terminal sequences and a 0.13-kb internal region present at about 0.9 kb from the 5' end of the DI genome. In this study, we investigated the role of the internal 0.13-kb region in MHV RNA replication. Overall sequences of the 0.13-kb regions from various MHV strains were similar to each other, with nucleotide substitutions in some strains; MHV-A59 was exceptional, with three nucleotide deletions. Computer-based secondary-structure analysis of the 0.13-kb region in the positive strand revealed that most of the MHV strains formed the same or a similar main stem-loop structure, whereas only MHV-A59 formed a smaller main stem-loop structure. The RNA secondary structures in the negative strands were much less uniform among the MHV strains. A series of DI RNAs that contained MHV-JHM-derived 5'- and 3'-terminal sequences plus internal 0.13-kb regions derived from various MHV strains were constructed. Most of these DI RNAs replicated in MHV-infected cells, except that MRP-A59, with a 0.13-kb region derived from MHV-A59, failed to replicate. Interestingly, replication of MRP-A59 was temperature dependent; it occurred at 39.5 degrees C but not at 37 or 35 degrees C, whereas a DI RNA with an MHV-JHM-derived 0.13-kb region replicated at all three temperatures. At 37 degrees C, synthesis of MRP-A59 negative-strand RNA was detected in MHV-infected and MRP-A59 RNA-transfected cells. Another DI RNA with the internal 0.13-kb region deleted also synthesized negative-strand RNA in MHV-infected cells. MRP-A59-transfected cells were shifted from 39.5 to 37 degrees C at 5.5 h postinfection, a time when most MHV negative-strand RNAs have already accumulated; after the shift, MRP-A59 positive-strand RNA synthesis ceased. The minimum sequence required for maintenance of the positive-strand major stem-loop structure and biological function of the MHV-JHM 0.13-kb region was about 57 nucleotides. Function was lost in the 50-nucleotide sequence that formed a positive-strand stem-loop structure identical to that of MHV-A59. These studies suggested that the RNA structure made by the internal sequence was important for positive-strand MHV RNA synthesis.  相似文献   

19.
Entry of enveloped animal viruses into their host cells always depends on a step of membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. VSV-induced membrane fusion occurs at a very narrow pH range, between 6.2 and 5.8, suggesting that His protonation is required for this process. To investigate the role of His in VSV fusion, we chemically modified these residues using diethylpyrocarbonate (DEPC). We found that DEPC treatment inhibited membrane fusion mediated by VSV in a concentration-dependent manner and that the complete inhibition of fusion was fully reversed by incubation of modified virus with hydroxylamine. Fluorescence measurements showed that VSV modification with DEPC abolished pH-induced conformational changes in G protein, suggesting that His protonation drives G protein interaction with the target membrane at acidic pH. Mass spectrometry analysis of tryptic fragments of modified G protein allowed the identification of the putative active His residues. Using synthetic peptides, we showed that the modification of His-148 and His-149 by DEPC, as well as the substitution of these residues by Ala, completely inhibited peptide-induced fusion, suggesting the direct participation of these His in VSV fusion.  相似文献   

20.
Matsuyama S  Taguchi F 《Journal of virology》2002,76(23):11819-11826
Although murine coronavirus mouse hepatitis virus (MHV) enters cells by virus-cell membrane fusion triggered by its spike (S) protein, it is not well known how the S protein participates in fusion events. We reported that the soluble form of MHV receptor (soMHVR) transformed a nonfusogenic S protein into a fusogenic one (F. Taguchi and S. Matsuyama, J. Virol. 76:950-958, 2002). In the present study, we demonstrate that soMHVR induces the conformational changes of the S protein, as shown by the proteinase digestion test. A cl-2 mutant, srr7, of the MHV JHM virus (JHMV) was digested with proteinase K after treatment with soMHVR, and the resultant S protein was analyzed by Western blotting using monoclonal antibody (MAb) 10G, specific for the membrane-anchored S2 subunit. A 58-kDa fragment, encompassing the two heptad repeats in S2, was detected when srr7 was digested after soMHVR treatment, while no band was seen when the virus was untreated. The appearance of the proteinase-resistant fragment was dependent on the temperature and time of srr7 incubation with soMHVR and also on the concentration of soMHVR. Coimmunoprecipitation indicated that the direct binding of soMHVR to srr7 S protein induced these conformational changes; this was also suggested by the inhibition of the changes following pretreatment of soMHVR with anti-MHVR MAb CC1. soMHVR induced conformational changes of the S proteins of wild-type (wt) JHMV cl-2, as well as revertants from srr7, srr7A and srr7B; however, a major proportion of these S proteins were resistant to proteinase K even without soMHVR treatment. The implications of this proteinase-resistant fraction are discussed. This is the first report on receptor-induced conformational changes of the membrane-anchored fragment of the coronavirus S protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号