首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
The time evolution of the photoinduced differential absorption spectrum of isolated Rhodobacter sphaeroides photosynthetic reaction centers was investigated. The measurements were carried out in the spectral region of 400-500 nm on the time scale of up to 200 microseconds. The spectral changes observed can be interpreted in terms of the effects of proton shift along hydrogen bonds between the primary quinone acceptor and the protein. A theoretical analysis of the spectrum time evolution was performed, which is based on the consideration of the kinetics of proton tunneling along the hydrogen bond. It was shown that the stabilization of the primary quinone electronic state occurs within the first several tens of microseconds after quinone reduction. It slows down upon the deuteration of reaction centers as well as after adding 90% of glycerol; on the other hand, it accelerates as temperature rises up to 40 degrees C.  相似文献   

2.
《BBA》1985,809(2):284-287
The standard free-energy change accompanying the electron transfer from QA to QB was estimated from the intensity of the delayed fluorescence in chromatophores of Rhodopseudomonas sphaeroides. The value of 120 meV (at pH 8) suggests that QB is more stable in the chromatophore membrane than in the isolated reaction center.  相似文献   

3.
Miyashita O  Onuchic JN  Okamura MY 《Biochemistry》2003,42(40):11651-11660
Electrostatic interactions are important for protein-protein association. In this study, we examined the electrostatic interactions between two proteins, cytochrome c(2) (cyt c(2)) and the reaction center (RC) from the photosynthetic bacterium Rhodobacter sphaeroides, that function in intermolecular electron transfer in photosynthesis. Electrostatic contributions to the binding energy for the cyt c(2)-RC complex were calculated using continuum electrostatic methods based on the recent cocrystal structure [Axelrod, H. L., et al. (2002) J. Mol. Biol. 319, 501-515]. Calculated changes in binding energy due to mutations of charged interface residues agreed with experimental results for a protein dielectric constant epsilon(in) of 10. However, the electrostatic contribution to the binding energy for the complex was close to zero due to unfavorable desolvation energies that compensate for the favorable Coulomb attraction. The electrostatic energy calculated as a function of displacement of the cyt c(2) from the bound position showed a shallow minimum at a position near but displaced from the cocrystal configuration. These results show that although electrostatic steering is present, other short-range interactions must be present to contribute to the binding energy and to determine the structure of the complex. Calculations made to model the experimental data on association rates indicate a solvent-separated transition state for binding in which the cyt c(2) is displaced approximately 8 A above its position in the bound complex. These results are consistent with a two-step model for protein association: electrostatic docking of the cyt c(2) followed by desolvation to form short-range van der Waals contacts for rapid electron transfer.  相似文献   

4.
In the reaction center from the photosynthetic purple bacterium Rhodobacter sphaeroides, light energy is rapidly converted to chemical energy through coupled electron-proton transfer to a buried quinone molecule Q(B). Involved in the proton uptake steps are carboxylic acids, which have characteristic infrared vibrations that are observable using light-induced Fourier transform infrared (FTIR) difference spectroscopy. Upon formation, Q(B)(-) induces protonation of Glu-L212, located within 5 A of Q(B), resulting in a IR signal at 1728 cm(-1). However, no other IR signal is observed within the classic absorption range of protonated carboxylic acids (1770-1700 cm(-1)). In particular, no signal for Asp-L213 is found despite its juxtaposition to Q(B) and importance for proton uptake on the second electron-transfer step. In an attempt to uncover the reason behind this lack of signal, the microscopic electrostatic environment in the vicinity of Q(B) was modified by interchanging Asp and Glu at the L213 and L212 positions. The Q(B)(-)/Q(B) FTIR spectrum of the Asp-L212/Glu-L213 swap mutant in the 1770-1700 cm(-1) range shows several distinct new signals, which are sensitive to (1)H/(2)H isotopic exchange, indicating that the reduction of Q(B) results in the change of the protonation state of several carboxylic acids. The new bands at 1752 and 1747 cm(-1) were assigned to an increase of protonation in response to Q(B) reduction of Glu-L213 and Asp-L212, respectively, based on the effect of replacing them with their amine analogues. Since other carboxylic acid signals were observed, it is concluded that the swap mutations at L212 and L213 affect a cluster of carboxylic acids larger than the L212/L213 acid pair. Implications for the native reaction center are discussed.  相似文献   

5.
Lavergne J  Matthews C  Ginet N 《Biochemistry》1999,38(14):4542-4552
1. The absorption changes associated with the formation of P+QBred (QBred stands for the semiquinone state of the secondary quinone acceptor) were investigated in chromatophores of Rhodobacter capsulatus. Marked modifications of the semiquinone spectrum were observed when the pH was lowered from 7 to 5. These modifications match those expected for a complete conversion of QBred from the anionic state QB- at pH 7 to the neutral protonated state QBH at pH 5. Similar modifications were observed in chromatophores from Rb. sphaeroides, but not in purified reaction centers from Rb. capsulatus, suggesting that the environment of the reaction center (native membrane vs detergent micelle) is the crucial parameter. 2. The recombination reaction P+QBred --> PQB was investigated as a function of pH. No particular kinetic heterogeneity was observed at low pH, showing that QBH remains mostly bound to the reaction center. The rate constant reaches a minimum value of 0.08 s-1 at pH 6, suggesting that the direct route for recombination prevails in chromatophores below this pH, instead of the usual pathway via QA-. 3. The proton uptake caused by QBred is about 1 below pH 7 and decreases at higher pH. It is suggested that the pH dependence of the conversion of QB- to QBH, occurring in a range where the uptake is constant, cannot be accommodated by a purely electrostatic model, but probably involves a conformational change. 4. The kinetics of the electron-transfer reaction QA-QB-->QAQBred were investigated. A 2-fold acceleration was observed between pH 7 and pH 5 (t1/2 approximately 30 and 15 microseconds, respectively). A fast (<10 microseconds) unresolved phase appears to be present at both pHs. The second electron-transfer QA-QBred-->QAQBH2 proceeds with a similar rate as the first electron transfer (15-30 microseconds phase). Consequences for the rate-limiting step are discussed. 5. The carotenoid shift, indicative of the membrane potential, displays a rising phase concomitant with the QA-QB-->QAQBred electron transfer. Its relative extent is markedly increased at pH 5, with part of the kinetics occurring during the unresolved fast phase. 6. The extent of the electrochromic shift of bacteriopheophytin around 750 nm associated with formation of QBred decreases toward acidic pH, reflecting the charge compensation due to proton uptake and the formation of neutral QBH.  相似文献   

6.
The purpose of this study was to gain information on the functional consequences of the supramolecular organization of the photosynthetic apparatus in the bacterium Rhodobacter sphaeroides. Isolated complexes of the reaction center (RC) with its core antenna ring (light-harvesting complex 1 (LH1)) were studied in their dimeric (native) form or as monomers with respect to excitation transfer and distribution of the quinone pool. Similar issues were examined in chromatophore membranes. The relationship between the fluorescence yield and the amount of closed centers is indicative of a very efficient excitation transfer between the two monomers in isolated dimeric complexes. A similar dependence was observed in chromatophores, suggesting that excitation transfer in vivo from a closed RC.LH1 unit is also essentially directed to its partner in the dimer. The isolated complexes were found to retain 25-30% of the endogenous quinone acceptor pool, and the distribution of this pool among the complexes suggests a cooperative character for the association of quinones with the protein complexes. In chromatophores, the decrease in the amount of photoreducible quinones when inhibiting a fraction of the centers implies a confinement of the quinone pool over small domains, including one to six reaction centers. We suggest that the crowding of membrane proteins may not be the sole reason for quinone confinement and that a quinone-rich region is formed around the RC.LH1 complexes.  相似文献   

7.
The topology of the cytochrome b subunit of the bc1 complex from Rhodobacter sphaeroides has been examined by generating gene fusions with alkaline phosphatase. Gene fusions were generated at random locations within the fbcB gene encoding the cytochrome b subunit. These fusion products were expressed in Escherichia coli and were screened for alkaline phosphatase activity on chromogenic plates. 33 in-frame fusions which showed activity were further characterized. The fusion junctions of all those fusions which had a high specific activity were clustered in three regions of the cytochrome b polypeptide, and thus these regions were tentatively assigned as being near the periplasmic surface. The data are consistent with a model containing eight transmembrane helices. In order to explore the validity of the gene fusion approach for a protein not normally expressed in E. coli, the topology of the L-subunit of the photosynthetic reaction center from R. sphaeroides was also explored using phoA gene fusions. A similar protocol was used as with the cytochrome b subunit. The gene fusions with high specific activity were shown to be in regions of the L-subunit polypeptide known to be at or near the periplasmic surface, as defined by the high resolution structure determined by X-ray crystallography. These data demonstrate the utility of this approach for determining membrane protein topology and extend potential applications to include at least some proteins not normally expressed in E. coli.  相似文献   

8.
Nabedryk E  Breton J  Joshi HM  Hanson DK 《Biochemistry》2000,39(47):14654-14663
The photoreduction of the secondary quinone Q(B) in native reaction centers (RCs) of Rhodobacter capsulatus and in RCs from the GluL212 --> Gln and GluL212 --> Ala mutants has been investigated at pH 7 in (1)H(2)O and (2)H(2)O by light-induced Fourier transform infrared (FTIR) difference spectroscopy. The Q(B)(-)/Q(B) FTIR difference spectra reflect changes of quinone-protein interactions and of protonation state of carboxylic acid groups as well as reorganization of the protein upon electron transfer. Comparison of Q(B)(-)/Q(B) spectra of native and mutant RCs indicates that the interactions between Q(B) or Q(B)(-) and the protein are similar in all RCs. A differential signal at approximately 1650/1640 cm(-1), which is common to all the spectra, is associated with a movement of a peptide carbonyl or a side chain following Q(B) reduction. On the other hand, Q(B)(-)/Q(B) spectra of native and mutant RCs display several differences, notably between 1700 and 1650 cm(-1) (amide I and side chains), between 1570 and 1530 cm(-1) (amide II), and at 1728-1730 cm(-1) (protonated carboxylic acid groups). In particular, the latter region in native RCs is characterized by a main positive band at 1728 cm(-1) and a negative signal at 1739 cm(-1). In the L212 mutants, the amplitude of the positive band is strongly decreased leading to a differential signal at 1739/1730 cm(-1) that is insensitive to (1)H/(2)H isotopic exchange. In native RCs, only the 1728 cm(-1) band is affected in (2)H(2)O while the 1739 cm(-1) signal is not. The effects of the mutations and of (1)H/(2)H exchange on the Q(B)(-)/Q(B) spectra concur in the attribution of the 1728 cm(-1) band in native RCs to (partial) proton uptake by GluL212 upon the first electron transfer to Q(B), as previously observed in Rhodobacter sphaeroides RCs [Nabedryk, E., Breton, J., Hienerwadel, R., Fogel, C., M?ntele, W., Paddock, M. L., and Okamura, M. Y. (1995) Biochemistry 34, 14722-14732]. More generally, strong homologies of the Q(B) to Q(B)(-) transition in the RCs from Rb. sphaeroides and Rb. capsulatus are detected by differential FTIR spectroscopy. The FTIR data are discussed in relation with the results from global proton uptake measurements and electrogenic events concomitant with the reduction of Q(B) and with a model of the Q(B) turnover in Rb. sphaeroides RCs [Mulkidjanian, A. Y. (1999) FEBS Lett. 463, 199-204].  相似文献   

9.
Proton and electron transfer events in reaction centers (RCs) from Rhodobacter sphaeroides were investigated by site-directed mutagenesis of glutamic acid at position 212 and aspartic acid at 213 in the secondary quinone (QB) binding domain of the L subunit. These residues were mutated singly to the corresponding amides (mutants L212EQ and L213DN) and together to give the double mutant (L212EQ/L213DN). In the double mutant RCs, the rate of electron transfer from the primary (QA) to the secondary (QB) acceptor quinones is fast (tau approximately 300 microseconds) and is pH independent from pH 5 to 11. The rate of recombination between the oxidized primary donor, P+, and QB- is also pH independent and much slower (tau approximately 10 s) than in the wild type (Wt), indicating a significant stabilization of the QB- semiquinone. In the double mutant, and in L213DN mutant RCs at low pH, the P+QB- decay is suggested to occur significantly via a direct recombination rather than by repopulating the P+QA- state, as in the Wt. Comparison of the behavior of Wt and the three mutant RC types leads to the following conclusions: the pK of AspL213 in the Wt is approximately 4 for the QAQB state (pKQB) and approximately 5 for the QAQB-state (pKQB-); for GluL212, pKQB approximately 9.5 and pKQB- approximately 11. In L213DN mutant RCs, pKQB of GluL212 is less than or equal to 7, indicating that the high pK values of GluL212 in the Wt are due largely to electrostatic interaction with the ionized AspL213 which contributes a shift of at least 2.5 pH units. Transfer of the second electron and all associated proton uptake to form QBH2 is drastically inhibited in double mutant and L213DN mutant RCs. At pH greater than or equal to 8, the rates are at least 10(4)-fold slower than in Wt RCs. In L212EQ mutant RCs the second electron transfer and proton uptake are biphasic. The fast phase of the electron transfer is similar to that of the Wt, but the extent of rapid transfer is pH dependent, revealing the pH dependence of the equilibrium QA(-)QB- in equilibrium with QAQBH-. The estimated limits on the pK values--pKQA-QB-less than or equal to 7.3, pKQAQB2- greater than or equal to 10.4--are similar to those derived earlier for Wt RCs [Kleinfeld et al. (1985) Biochim. Biophys. Acta 809, 291-310] and may pertain to the quinone head group, per se.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号