首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu P  Huang C  Wang HL  Zhou K  Xiao FX  Qun W 《FEBS letters》2004,577(1-2):205-208
Calcineurin (CN) is a heterodimer composed of a catalytic subunit (CNA) and a regulatory subunit (CNB). Loop 7 lies within the CNA catalytic domain. To investigate the role of Loop 7 in enzyme activity, we systematically examined all its residues by site-directed deletion mutation. Our results show that the Loop 7 residues are important for enzyme activity. Besides deleting residues V314, Y315 or N316, enzyme activity also increased dramatically when residues D313 or K318 were deleted. In contrast, almost all activity was lost when L312 or N317 were deleted. Ni2+ and Mn2+ were effective activators for all active mutants. However, whereas the wild-type enzyme was more efficiently activated by Ni2+ than by Mn2+ with 32P-labeled R(II) peptide as substrate, the reverse was true in all the mutants. We also found that the effect of Loop 7 on enzyme activity was substrate dependent, and involved interactions between Loop 7 residues and the unresolved part of the CN crystal structure near the auto-inhibitory domain and catalytic site.  相似文献   

2.
Arginine kinase (AK) catalyzes the reversible phosphorylation of arginine by MgATP to form a high-energy compound phosphoarginine (Parg) and MgADP in forward reaction in invertebrates. To detect the different catalytical mechanisms among Stichopus-AK (dimer) and Limulus-AK (monomer) and Torpedo creatine kinase (dimeric CK) and to reveal the structural role of the C-terminal domain loop (C-loop) of dimeric AK, six single-site mutants, E314D, E314Q, E314V, F315A, F315H and F315Y were constructed as well as two multi-site variants, S312R/F315H/V319E (formed by substituting the C-loop of monomeric AK for that of dimeric AK, termed the AAloop) and S312G/E314V/F315D/E317A/S318A/G321S (formed by substituting the C-loop of dimeric CK for that of dimeric AK, termed the ACloop). The AK activity of the three mutants at Glu314 decreased significantly, from 60- to 500-fold. The ACloop showed only slight AK activity, unlike the same construction in Limulus-AK. In addition, all Phe315 mutants including the AAloop which retained Glu314 had modest AK activity (5–84% of the wild type). All the results above suggested that Glu314 played a more significant role in catalysis in dimeric AK than in the monomer. In addition, ANS profiles indicated that the tolerance of the three Glu314 mutants to denaturant decreased slightly compared with wild type AK. Though monomeric AK has a His residue at site 315, mutants F315H and the AAloop could not resist any perturbation of denaturant, and the mutants showed a Gibbs free energy of about 2.7 kJ/mol lower than wild type AK. Therefore Phe315 in dimeric AK has a different role from His315 in monomeric AK. This might contribute to the stabilization of the native conformation, while His315 in Limulus AK directly binded to the carboxylate of arginine. Taking all the results above together, we suggested a unique mechanism in dimeric AK, different from both monomeric AK and dimeric CK.  相似文献   

3.
Liu P  Huang C  Jia Z  Yi F  Yu DY  Wei Q 《Biochimie》2005,87(2):215-221
Calcineurin is composed of a catalytic subunit A (CNA) and a regulatory subunit B (CNB). In addition to the catalytic core, CNA further contains three non-catalytic domains--CNB binding domain (BBH), calmodulin binding domain (CBD), and autoinhibitory domain (AI). To investigate the effect of these three domains on the activity of CNA, we have constructed domain deletion mutants CNAa (catalytic domain only), CNAac (CNAa and CBD), and CNAaci (CNAa, CBD and AI). By using p-nitrophenylphosphate and (32)P-labeled R(II) peptide as substrates, we have systematically examined the phosphatase activities, kinetics, and regulatory effects of Mn(2+)/Ni(2+) and Mg(2+). The results show that the catalytic core has the highest activity and the order of activity of the remaining constructs is CNAac>CNAaci>CNA. Sequential removal of the non-catalytic domains corresponds to concurrent increases of the phosphatase activity assayed under several conditions. This observation clearly demonstrates that non-catalytic domains negatively regulate the enzyme activity and act as intra-molecular inhibitors, possibly through restraining the conformation elasticity of the catalytic core required for optimal catalysis or interfering with substrate access. The sequential domain deletion favors activation of the enzyme by Mn(2+)/Ni(2+) but not by Mg(2+) (except for CNAa), suggesting that enzyme activation by Mn(2+)/Ni(2+) is mainly mediated via the catalytic domain, whereas activation by Mg(2+) is via both the catalytic core and non-catalytic domains.  相似文献   

4.
High activity of the calcineurin A subunit with a V314 deletion   总被引:4,自引:0,他引:4  
Yan L  Wei Q 《Biological chemistry》1999,380(11):1281-1285
A deletion mutant (V314) of the calcineurin A subunit was constructed using site-directed mutagenesis. Its phosphatase activity and function were then characterized. The V314 deletion significantly altered the phosphatase activity, which was more than ten times higher than that of wild-type calcineurin, the calcineurin-immunosuppressant/immunophilin interaction, the effect of metal ions and calcineurin subunit interaction. We propose that the change of the activity and function of V314 is due to conformational changes of calcineurin to benefit the binding of, or stimulation by, Mn2+, or to affect the interaction between the A and B subunits.  相似文献   

5.
Xie XJ  Xue CZ  Huang W  Yu DY  Wei Q 《Biological chemistry》2006,387(10-11):1461-1467
The molecular architectures of the catalytic core of protein phosphatase 1 (PP1) and protein phosphatase 2B (PP2B) are similar, and both contain a beta12-beta13 loop that consists of non-conserved residues. A truncation mutant containing the PP2B catalytic domain has previously been constructed in our laboratory, and designated CNAa. In this study, the PP1 catalytic subunit (PP1c) and CNAa, as well as mutants with the corresponding loops exchanged, were investigated using multiple substrates. Deletion of the beta12-beta13 loop from Y272 to A279 of PP1c or from Y311 to K318 of CNAa resulted in inactive proteins. Loop exchange generated chimeric mutants called PP1-CNAa-loop and CNAa-PP1-loop. The activities and kinetic parameters of the two chimeric mutants were altered in the direction of the enzyme from which its loop was derived. The activity of PP1c or CNAa-PP1-loop was similar whether preincubated with Mn(2+) or not, while CNAa and PP1-CNAa-loop can acquire enhanced activation if preincubated with Mn(2+) for longer periods of time. Intrinsic fluorescence spectra revealed that the three-dimensional structure was altered as a result of exchanging the loops of PP1c and CNAa. In conclusion, the beta12-beta13 loop is one of the key regulatory elements in the catalytic domain for the activity and properties of PP1c and CNAa.  相似文献   

6.
CK2 is an essential, ubiquitous, and highly pleiotropic protein kinase whose catalytic subunits (alpha and alpha') and holoenzyme (composed by two catalytic and two regulatory beta-subunits) are both constitutively active, a property that is suspected to contribute to its pathogenic potential. Extensive interactions between the N-terminal segment and the activation loop are suspected to underlie the high constitutive activity of the isolated catalytic subunit. Here we show that a number of point mutations (Tyr(26) --> Phe, Glu(180) --> Ala, Tyr(182) --> Phe) and deletions (Delta 2-6, Delta 2-12, Delta 2-18, Delta 2-24, Delta 2-30) expected to affect these interactions are more or less detrimental to catalytic activity of the alpha-subunit of human CK2, the deleted mutants Delta 2-24 and Delta 2-30 being nearly inactive under normal assay conditions. Kinetic analyses showed that impaired catalytic activity of mutants Delta 2-12, Delta 2-18, Delta 2-24, and Y182F is mainly accounted for by dramatic increases in the K(m) values for ATP, whereas a drop in K(cat) with K(m) values almost unchanged was found with mutants Y26F and E180A. Holoenzyme reconstitution restored the activity of mutants Delta 2-12, Delta 2-18, Y26F, E180A, and Y182F to wild type level and also conferred catalytic activity to the intrinsically inactive mutants, Delta 2-24 and Delta 2-30. These data demonstrate that specific interactions between the N-terminal segment and the activation loop are essential to provide a fully active conformation to the catalytic subunits of CK2; they also show that these interactions become dispensable upon formation of the holoenzyme, whose constitutive activity is conferred by the beta-subunit through a different mechanism.  相似文献   

7.
AMP-activated protein kinase (AMPK) acts as an energy sensor, being activated by metabolic stresses and regulating cellular metabolism. AMPK is a heterotrimer consisting of a catalytic alpha subunit and two regulatory subunits, beta and gamma. It had been reported that the mammalian AMPK alpha subunit contained an autoinhibitory domain (alpha1: residues 313-392) and had little kinase activity. We have found that a conserved short segment of the alpha subunit (alpha1-(313-335)), which includes a predicted alpha-helix, is responsible for alpha subunit autoinhibition. The role of the residues in this segment for autoinhibition was further investigated by systematic site-directed mutation. Several hydrophobic and charged residues, in particular Leu-328, were found to be critical for alpha1 autoinhibition. An autoinhibitory structural model of human AMPK alpha1-(1-335) was constructed and revealed that Val-298 interacts with Leu-328 through hydrophobic bonding at a distance of about 4 A and may stabilize the autoinhibitory conformation. Further mutation analysis showed that V298G mutation significantly activated the kinase activity. Moreover, the phosphorylation level of acetyl-CoA carboxylase, the AMPK downstream substrate, was significantly increased in COS7 cells overexpressing AMPK alpha1-(1-394) with deletion of residues 313-335 (Deltaalpha394) and a V298G or L328Q mutation, and the glucose uptake was also significantly enhanced in HepG2 cells transiently transfected with Deltaalpha394, V298G, or L328Q mutants, which indicated that these AMPK alpha1 mutants are constitutively active in mammalian cells and that interaction between Leu-328 and Val-298 plays an important role in AMPK alpha autoinhibitory function.  相似文献   

8.
Protein phosphatase 1 (PP1) is one of the major protein phosphatases in eukaryotic cells. PP1 activity is believed to be controlled by the interaction of PP1 catalytic subunit with various regulatory subunits. The essential gene GLC7 encodes the PP1 catalytic subunit in Saccharomyces cerevisiae. In this study, full-length GLC7(1-312), C-terminal deletion mutants, and C-terminally poly-his tagged mutants were constructed and expressed in a GLC7 knockout strain of S. cerevisiae. Viability studies of the GLC7 knockout strains carrying the plasmids expressing GLC7 C-terminal deletion mutants and their tagged forms showed that the mutants 1-295 and 1-304 were functional, whereas the mutant 1-245 was not. The C-terminally poly-his tagged Glc7p with and without an N-terminal hemagglutinin (HA) tag was partially purified by immobilized Ni(2+) affinity chromatography and further analyzed by gel filtration and ion exchange chromatography. Phosphatase activity assays, SDS-PAGE, and Western blot analyses of the chromatographic fractions suggested that the Glc7p associated with regulatory subunits in vivo. A 40-kDa protein was copurified with tagged Glc7p through several chromatographic procedures. Monoclonal antibody against the HA tag coimmunoprecipitated the tagged Glc7p and the 40-kDa protein. This protein was further purified by a reverse phase HPLC column. Analysis by CNBr digestion, peptide sequencing, and electrospray mass spectrometry showed that this 40-kDa protein is Sds22p, one of the proteins proposed to be a regulatory subunit of Glc7. These results demonstrate that Sds22p forms a complex with Glc7p and that Sds22p:Glc7p is a stable isolatable form of yeast PP1.  相似文献   

9.
A Mn2+-dependent protein phosphatase 2A which is composed of a 34 kDa catalytic C' subunit and a 63 kDa regulatory A' subunit, was purified from human erythrocyte cytosol. C' and A' produced V8- and papain-peptide maps identical to those of the 34 kDa catalytic C and the 63 kDa regulatory A subunits of the Mn2+-independent conventional protein phosphatase in human erythrocyte cytosol, respectively. Reconstitution of C'A and CA' revealed that the metal dependency resided in C' and not in A'. In CA, 0.87 +/- 0.12 mol zinc and 0.35 +/- 0.18 mol iron per mol enzyme were detected by atomic absorption spectrophotometry, but manganese, magnesium and cobalt were not detected. None of these metals was detected in C'A'. Pre-incubation of C' with ZnCl2 and FeCl2, but not FeCl3, synergistically stimulated the Mn2+-independent protein phosphatase activity. The protein phosphatase activity of C was unaffected by the same zinc and/or iron treatment. These results suggest that C is a Zn2+- and Fe2+-metalloenzyme and that C' is the apoenzyme.  相似文献   

10.
The Ca2+/calmodulin-dependent protein phosphatase calcineurin (CN), a heterodimer composed of a catalytic subunit A and an essential regulatory subunit B, plays critical functions in various cellular processes such as cardiac hypertrophy and T cell activation. It is the target of the most widely used immunosuppressants for transplantation, tacrolimus (FK506) and cyclosporin A. However, the structure of a large part of the CNA regulatory region remains to be determined, and there has been considerable debate concerning the regulation of CN activity. Here, we report the crystal structure of full-length CN (β isoform), which revealed a novel autoinhibitory segment (AIS) in addition to the well-known autoinhibitory domain (AID). The AIS nestles in a hydrophobic intersubunit groove, which overlaps the recognition site for substrates and immunosuppressant-immunophilin complexes. Indeed, disruption of this AIS interaction results in partial stimulation of CN activity. More importantly, our biochemical studies demonstrate that calmodulin does not remove AID from the active site, but only regulates the orientation of AID with respect to the catalytic core, causing incomplete activation of CN. Our findings challenge the current model for CN activation, and provide a better understanding of molecular mechanisms of CN activity regulation.  相似文献   

11.
Effect of different immunosuppressive drugs on calcineurin and its mutants   总被引:2,自引:0,他引:2  
Several mutants in Loop7 region and near Loop7 region of calcineurin A (CN A) subunit have been constructed and purified using site-directed mutagenesis. Their phosphatase activity and the corresponding solution conformation were examined. Their phosphatase activities between wild-type CN and mutants were compared to identify the interaction of different immuno-suppressive drugs with CN. The results showed that the phosphatase activities of the mutants at Loop7 were much higher than the one of wild-type CN. Furthermore, circular dichroism spectra of the mutants revealed that their solution conformations gave rise in changes in native structure of the protein. Cyclophilin-CyclosporinA (CyP-CsA) significantly inhibited the phosphatase activity of wild-type CN, and had no effects on the phosphatase activity of mutants in Loop7 region, which indicates that the site-directed mutagenesis at Loop7 region made a significant change in the interaction between CyP-CsA and CN. Examination of the activities of these  相似文献   

12.
Several mutants in Loop7 region and near Loop7 region of calcineurin A (CN A) subunit have been constructed and purified using site-directed mutagenesis.Their phosphatase activity and the corresponding solution conformation were examined.Their phosphatase activities between wild-type CN and mutants were compared to identify the interaction of different immunosuppressive drugs with CN.The results showed that the phosphatase activities of the mutants at Loop7 were much higher than the one of wild-type CN.Furthermore,circular dichroism spectra of the mutants revealed that their solution conformations gave rise in changes in native structure of the protein.Cyclophilin-CyclosporinA (CyP-CsA) significantly inhibited the phosphatase activity of wild-type CN,and had no effects on the phosphatase activity of mutants in Loop7 region,which indicates that the site-directed mutagenesis at Loop7 region made a significant change in the interaction between CyP-CsA and CN.Examination of the activities of these mutants resulted in the presence of immunosuppressive component from traditional Chinese drugs.The component of Chinese drug,ZIP1,could directly inhibit both CN and CN mutants without drug binding protein.These results suggest that the Loop7 region is an important structural area involved in the inhibition by CyP-CsA.It is valuable to further study the inhibition by ZIP1.  相似文献   

13.
Protein phosphatase 2A (PP2A) is composed of structural (A), catalytic (C), and regulatory (B) subunits. The catalytic subunit (PP2A(C)) undergoes reversible carboxyl-methylation and -demethylation at its C-terminal leucine residue (Leu309), catalyzed by PP2A-methyltransferase (PMT) and PP2A methylesterase (PME-1), respectively. In this study, we observed that the activity of PP2A was largely unaffected by the addition of PME-1, and that the regulatory subunit (PR55/B) could bind demethylated PP2A(D). Furthermore, to study the precise effect of Leu309 demethylation on PP2A activity, we generated two His(8)-tagged mutant versions of PP2A(C) containing an alanine residue in place of Leu309, and a deletion of Leu309. Both recombinant mutants exhibited phosphatase activity. In addition, we demonstrated that both mutants could constitute a holoenzyme with the regulatory A and B subunits. Our collective results indicate that methylation of Leu309 of PP2A(C) is unnecessary for the PP2A activity and the binding of PR55/B.  相似文献   

14.
钙调神经磷酸酶(calcineurin,CN)是唯一依赖于Ca2+和钙调蛋白(calmodulin,CaM)的丝氨酸/苏氨酸型蛋白磷酸酶,由1个催化亚基CNA和1个调节亚基CNB组成. CNA 有3种亚型,最常见的是由CNA1基因编码的α亚型(CNAα). 在克隆CNA1基因cDNA的过程中,发现了1种新的人CNA1转录本-CNAα4. 与CNA1基因的其它转录本相比,CNAα4缺失第2外显子,其编码蛋白质由454个氨基酸组成,具有比其它3种CNAα亚型更短的磷酸酶催化结构域. CNAα4具有与CNAα1相似的CaM亲和力,但是其激活活化T细胞核因子(nuclear factor of activated T cells,NFAT)的活性明显强于CNAα1,提示CNAα4所缺失的氨基酸序列(Ala20 Thr86)并非CNA催化结构域所必需,相反,Ala20-Thr86缺失可能有助于其酶活性中心与NFAT的结合并发挥作用.  相似文献   

15.
Tolstykh T  Lee J  Vafai S  Stock JB 《The EMBO journal》2000,19(21):5682-5691
Phosphoprotein phosphatase 2A (PP2A) is a major phosphoserine/threonine protein phosphatase in all eukaryotes. It has been isolated as a heterotrimeric holoenzyme composed of a 65 kDa A subunit, which serves as a scaffold for the association of the 36 kDa catalytic C subunit, and a variety of B subunits that control phosphatase specificity. The C subunit is reversibly methyl esterified by specific methyltransferase and methylesterase enzymes at a completely conserved C-terminal leucine residue. Here we show that methylation plays an essential role in promoting PP2A holoenzyme assembly and that demethylation has an opposing effect. Changes in methylation indirectly regulate PP2A phosphatase activity by controlling the binding of regulatory B subunits to AC dimers.  相似文献   

16.
Jiang G  Wei Q 《Biological chemistry》2003,384(9):1299-1303
Calcineurin (CN), a Ca2+/calmodulin-dependent protein phosphatase, plays a critical role in T-cell activation by regulating the activity of NF-AT. CN is a heterodimer consisting of a catalytic subunit (CNA) and a Ca2+-binding regulatory subunit (CNB). CNB is composed of two global domains: the C-terminal domain (DC) and the N-terminal domain (DN), each containing two Ca2+ binding sites. In this study, using purified DN and DC derived from constructed expression systems, we revealed that intact CNB and DC can stimulate the phosphatase activity of CNA, about 2.2 and 1.6 times the phosphatase activity of CNA alone, respectively; DN itself has little effect on the phosphatase activity of CNA. Fluorescence spectroscopy of an ANS-hydrophobic fluorescence probe shows that binding of Ca2+ to CNB, DC or DN leads to exposure of the hydrophobic surface of the proteins and that the hydrophobicity of CNB is the greatest, that of DC is less, and that of DN is the least. The hydrophobic surface of CNB may be an important structural basis for stimulating CN phosphatase activity.  相似文献   

17.
Na,K-ATPase, the main active transport system for monovalent cations in animal cells, is responsible for maintaining Na(+) and K(+) gradients across the plasma membrane. During its transport cycle it binds three cytoplasmic Na(+) ions and releases them on the extracellular side of the membrane, and then binds two extracellular K(+) ions and releases them into the cytoplasm. The fourth, fifth, and sixth transmembrane helices of the alpha subunit of Na,K-ATPase are known to be involved in Na(+) and K(+) binding sites, but the gating mechanisms that control the access of these ions to their binding sites are not yet fully understood. We have focused on the second extracellular loop linking transmembrane segments 3 and 4 and attempted to determine its role in gating. We replaced 13 residues of this loop in the rat alpha1 subunit, from E314 to G326, by cysteine, and then studied the function of these mutants using electrophysiological techniques. We analyzed the results using a structural model obtained by homology with SERCA, and ab initio calculations for the second extracellular loop. Four mutants were markedly modified by the sulfhydryl reagent MTSET, and we investigated them in detail. The substituted cysteines were more readily accessible to MTSET in the E1 conformation for the Y315C, W317C, and I322C mutants. Mutations or derivatization of the substituted cysteines in the second extracellular loop resulted in major increases in the apparent affinity for extracellular K(+), and this was associated with a reduction in the maximum activity. The changes produced by the E314C mutation were reversed by MTSET treatment. In the W317C and I322C mutants, MTSET also induced a moderate shift of the E1/E2 equilibrium towards the E1(Na) conformation under Na/Na exchange conditions. These findings indicate that the second extracellular loop must be functionally linked to the gating mechanism that controls the access of K(+) to its binding site.  相似文献   

18.
Wang HL  Du YW  Xiang BQ  Lin WL  Wei Q 《IUBMB life》2007,59(6):388-393
Calcineurin (CN) is the common receptor for two immunophilin-immunosuppressant complexes, Cyp-CsA and FKBP-FK506. Calcineurin is composed of a catalytic subunit (CNA) and a regulatory subunit (CNB). CNA contains the catalytic domain and three regulatory domains: a CNB-binding domain (BBH, 350-370), a calmodulin- binding domain (CBD, 389-413), and an autoinhibitory domain (AID, 457-482). To investigate the effects of these three regulatory domains on the inhibition of CN by the two drugs we constructed three C-terminal deletion mutants: CNAabc (1-456), CNAab (1-388) and CNAa (1-347). Inhibition of CNA and its derivatives by the two drugs was examined and compared with inhibition by peptides (AID [457-482] and LCBD [389-456], CBD and the extension of the AID were included). Our results show that the BBH is critical for inhibition of CN by Cyp-CsA and FKBP-FK506. The LCBD has no effect and the AID reduces the inhibition of CN by two complexes. In addition, LCBD and AID as autoinhibitors may inhibit enzyme activity via different sites.  相似文献   

19.
Following the induction of apoptosis in mammalian cells, protein kinase C zeta (PKC zeta) is processed between the regulatory and catalytic domains by caspases, which increases its kinase activity. The catalytic domain fragments of PKC isoforms are considered to be constitutively active, because they lack the autoinhibitory amino-terminal regulatory domain, which includes a pseudosubstrate segment that plugs the active site. Phosphorylation of the activation loop at Thr(410) is known to be sufficient to activate the kinase function of full-length PKC zeta, apparently by inducing a conformational change, which displaces the amino-terminal pseudosubstrate segment from the active site. Amino acid substitutions for Thr(410) of the catalytic domain of PKC zeta (CAT zeta) essentially abolished the kinase function of ectopically expressed CAT zeta in mammalian cells. Similarly, substitution of Ala for a Phe of the docking motif for phosphoinositide-dependent kinase-1 prevented activation loop phosphorylation and abolished the kinase activity of CAT zeta. Treatment of purified CAT zeta with the catalytic subunit of protein phosphatase 1 decreased activation loop phosphorylation and kinase activity. Recombinant CAT zeta from bacteria lacked detectable kinase activity. Phosphoinositide-dependent kinase-1 phosphorylated the activation loop and activated recombinant CAT zeta from bacteria. Treatment of HeLa cells with fetal bovine serum markedly increased the phosphothreonine 410 content of CAT zeta and stimulated its kinase activity. These findings indicate that the catalytic domain of PKC zeta is intrinsically inactive and dependent on the transphosphorylation of the activation loop.  相似文献   

20.
Noonan syndrome was recently reported to be caused by mutations in the PTPN11 gene in 40% of the cases. This gene encodes the nonreceptor-type protein tyrosine phosphatase SHP-2 and has been shown to be self down-regulated with the concurrency of two SH2 domains. Insertion of a specific loop (D'EF) from N-terminal SH2 domain into the SHP-2 active-site is responsible for the reversible inhibition of the phosphatase activity. Here we report the first in frame trinucleotide deletion resulting in the removal of Aspartate 61 (D61del), a key residue of the N-terminal SH2 D'EF loop. Energetic-based structural analysis and electrostatic calculations carried out on the wild-type and mutant proteins predict lower stability of the D'EF loop for the D61del variant as compared to the wild type indicating better access to the active site and most likely an enzyme activated for longer extent. Similar computations were performed on the previously functionally characterized gain-of-function D61Y mutant and similar behaviors were observed. The simulation data for the D61del and D61Y mutants suggest that both variants could yield more catalytic cycles than the wild-type molecule in the same timespan because of the opening of the active site. It also supports the notion that D61 plays a major role for proper down-regulation of the protein tyrosine phosphatase activity of SHP-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号