首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signaling pathways regulate contraction of striated (skeletal and cardiac) and smooth muscle. Although these are similar, there are striking differences in the pathways that can be attributed to the distinct functional roles of the different muscle types. Muscles contract in response to depolarization, activation of G-protein-coupled receptors and other stimuli. The actomyosin fibers responsible for contraction require an increase in the cytosolic levels of calcium, which signaling pathways induce by promoting influx from extracellular sources or release from intracellular stores. Rises in cytosolic calcium stimulate numerous downstream calcium-dependent signaling pathways, which can also regulate contraction. Alterations to the signaling pathways that initiate and sustain contraction and relaxation occur as a consequence of exercise and pathophysiological conditions.  相似文献   

2.
《The Journal of cell biology》1993,120(5):1137-1146
Calcium release from intracellular stores is the signal generated by numerous regulatory pathways including those mediated by hormones, neurotransmitters and electrical activation of muscle. Recently two forms of intracellular calcium release channels (CRCs) have been identified. One, the inositol 1,4,5-trisphosphate receptors (IP3Rs) mediate IP3-induced Ca2+ release and are believed to be present on the ER of most cell types. A second form, the ryanodine receptors (RYRs) of the sarcoplasmic reticulum, have evolved specialized functions relevant to muscle contraction and are the major CRCs found in striated muscles. Though structurally related, IP3Rs and RYRs have distinct physiologic and pharmacologic profiles. In the heart, where the dominant mechanism of intracellular calcium release during excitation-contraction coupling is Ca(2+)-induced Ca2+ release via the RYR, a role for IP3-mediated Ca2+ release has also been proposed. It has been assumed that IP3Rs are expressed in the heart as in most other tissues, however, it has not been possible to state whether cardiac IP3Rs were present in cardiac myocytes (which already express abundant amounts of RYR) or only in non- muscle cells within the heart. This lack of information regarding the expression and structure of an IP3R within cardiac myocytes has hampered the elucidation of the significance of IP3 signaling in the heart. In the present study we have used combined in situ hybridization to IP3R mRNA and immunocytochemistry to demonstrate that, in addition to the RYR, an IP3R is also expressed in rat cardiac myocytes. Immunoreactivity and RNAse protection have shown that the IP3R expressed in cardiac myocytes is structurally similar to the IP3R in brain and vascular smooth muscle. Within cardiac myocytes, IP3R mRNA levels were approximately 50-fold lower than that of the cardiac RYR mRNA. Identification of an IP3R in cardiac myocytes provides the basis for future studies designed to elucidate its functional role both as a mediator of pharmacologic and hormonal influences on the heart, and in terms of its possible interaction with the RYR during excitation- contraction coupling in the heart.  相似文献   

3.
Voltage-gated calcium channels are a family of integral membrane calcium-selective proteins found in all excitable and many nonexcitable cells. Calcium influx affects membrane electrical properties by depolarizing cells and generally increasing excitability. Calcium entry further regulates multiple intracellular signaling pathways as well as the biochemical factors that mediate physiological functions such as neurotransmitter release and muscle contraction. Small changes in the biophysical properties or expression of calcium channels can result in pathophysiological changes leading to serious chronic disorders. In humans, mutations in calcium channel genes have been linked to a number of serious neurological, retinal, cardiac, and muscular disorders.  相似文献   

4.
Cardiac muscle requires an external source of calcium for contraction, but current evidence supports an intracellular pool of bound calcium as the primary activator of contraction. The size of this intracellular pool modulates the amount of calcium released to troponin during systole and the resultant contractile response. Proposed mechanisms for modulation of activator calcium include: 1) an alteration in phase II "slow current" allowing increased electrogenic calcium flux; 2) a glycoside independent sodium-calcium exchange across the sarcolemma that can be modulated by changes in the sodium gradient; 3) potassium-calcium exchange system during cardiac repolarization; 4) an augmentation of calcium accumulation by cardiac sarcoplasmic reticulum related to various phosphorylation mechanisms; and 5) an alteration in phospholipid affinity effected by cardiac glycoside at sarcolemmal sites related to the Na+, K+-ATPase.  相似文献   

5.
Acidosis in cardiac myocytes is a major factor in the reduced inotropy that occurs in the ischemic heart. During acidosis, diastolic calcium concentration and the amplitude of the calcium transient increase, while the strength of contraction decreases. This has been attributed to the inhibition by protons of calcium uptake and release by the sarcoplasmic reticulum, to a rise of intracellular sodium caused by activation of sodium-hydrogen exchange, decreased calcium binding affinity to Troponin-C, and direct effects on the contractile machinery. The relative contributions and concerted action of these effects are, however, difficult to establish experimentally. We have developed a mathematical model to examine altered calcium-handling mechanisms during acidosis. Each of the alterations was incorporated into a dynamical model of pH regulation and excitation-contraction coupling to predict the time courses of key ionic species during acidosis, in particular intracellular pH, sodium and the calcium transient, and contraction. This modeling study suggests that the most significant effects are elevated sodium, inhibition of sodium-calcium exchange, and the direct interaction of protons with the contractile machinery; and shows how the experimental data on these contributions can be reconciled to understand the overall effects of acidosis in the beating heart.  相似文献   

6.
7.
A preferred amplitude of calcium sparks in skeletal muscle   总被引:7,自引:0,他引:7       下载免费PDF全文
In skeletal and cardiac muscle, calcium release from the sarcoplasmic reticulum, leading to contraction, often results in calcium sparks. Because sparks are recorded by confocal microscopy in line-scanning mode, their measured amplitude depends on their true amplitude and the position of the spark relative to the scanned line. We present a method to derive from measured amplitude histograms the actual distribution of spark amplitudes. The method worked well when tested on simulated distributions of experimental sparks. Applied to massive numbers of sparks imaged in frog skeletal muscle under voltage clamp in reference conditions, the method yielded either a decaying amplitude distribution (6 cells) or one with a central mode (5 cells). Caffeine at 0.5 or 1 mM reversibly enhanced this mode (5 cells) or induced its appearance (4 cells). The occurrence of a mode in the amplitude distribution was highly correlated with the presence of a mode in the distribution of spark rise times or in the joint distribution of rise times and spatial widths. If sparks were produced by individual Markovian release channels evolving reversibly, they should not have a preferred rise time or amplitude. Channel groups, instead, could cooperate allosterically or through their calcium sensitivity, and give rise to a stereotyped amplitude in their collective spark.  相似文献   

8.
Ryanodine receptors in muscarinic receptor-mediated bronchoconstriction   总被引:3,自引:0,他引:3  
Ryanodine receptors (RyRs), intracellular calcium release channels essential for skeletal and cardiac muscle contraction, are also expressed in various types of smooth muscle cells. In particular, recent studies have suggested that in airway smooth muscle cells (ASMCs) provoked by spasmogens, stored calcium release by the cardiac isoform of RyR (RyR2) contributes to the calcium response that leads to airway constriction (bronchoconstriction). Here we report that mouse ASMCs also express the skeletal muscle and brain isoforms of RyRs (RyR1 and RyR3, respectively). In these cells, RyR1 is localized to the periphery near the cell membrane, whereas RyR3 is more centrally localized. Moreover, RyR1 and/or RyR3 in mouse airway smooth muscle also appear to mediate bronchoconstriction caused by the muscarinic receptor agonist carbachol. Inhibiting all RyR isoforms with > or = 200 microM ryanodine attenuated the graded carbachol-induced contractile responses of mouse bronchial rings and calcium responses of ASMCs throughout the range of carbachol used (50 nM to > or = 3 microM). In contrast, inhibiting only RyR1 and RyR3 with 25 microM dantrolene attenuated these responses caused by high (>500 nM) but not by low concentrations of carbachol. These data suggest that, as the stimulation of muscarinic receptor in the airway smooth muscle increases, RyR1 and/or RyR3 also mediate the calcium response and thus bronchoconstriction. Our findings provide new insights into the complex calcium signaling in ASMCs and suggest that RyRs are potential therapeutic targets in bronchospastic disorders such as asthma.  相似文献   

9.
Cao CM  Xia Q  Zhang X  Xu WH  Jiang HD  Chen JZ 《Life sciences》2003,72(22):2451-2463
The aim of the present study is to investigate the effect of Salvia miltiorrhiza (SM) on contraction and the intracellular calcium of isolated ventricular myocytes during normoxia or anoxia and reoxygenation using a video tracking system and spectrofluorometry. Cardiac ventricular myocytes were isolated enzymatically by collagenase and exposed to 5 min of anoxia followed by 10 min of reoxygenation. SM (1-9 g/L) depressed both contraction and the [Ca(2+)](i) transient in a dose-dependent manner. SM did not affect the diastolic calcium level and the sarcolemmal Ca(2+) channel of myocytes but decreased the caffeine-induced calcium release. During anoxia, the +/-dL/dtmax, amplitudes of contraction (dL) of cell contraction and [Ca(2+)](i) transients were decreased, while the diastolic calcium level was increased. None of the parameters returned to the pre-anoxia level during reoxygenaton. However, SM (3 g/L) did attenuate the changes in cell contraction and intracellular calcium induced by anoxia and reoxygenation. It is concluded that SM has different effects on normoxic and anoxic cardiomyocytes. The SM-induced reduction of changes in contraction and intracellular calcium induced by anoxia/reoxygenation indicates that SM may be beneficial for cardiac tissue in recovery of mechanical function and intracellular calcium homeostasis.  相似文献   

10.
Regulation of intracellular calcium (Ca2+) is critical in all cell types. The ryanodine receptor (RyR), an intracellular Ca2+ release channel located on the sarco/endoplasmic reticulum (SR/ER), releases Ca2+ from intracellular stores to activate critical functions including muscle contraction and neurotransmitter release. Dysfunctional RyR-mediated Ca2+ handling has been implicated in the pathogenesis of inherited and non-inherited conditions including heart failure, cardiac arrhythmias, skeletal myopathies, diabetes, and neurodegenerative diseases. Here we have reviewed the evidence linking human disorders to RyR dysfunction and describe novel approaches to RyR-targeted therapeutics.  相似文献   

11.
Excitation contraction (e-c) coupling in skeletal and cardiac muscles involves an interaction between specialized junctional domains of the sarcoplasmic reticulum (SR) and of exterior membranes (either surface membrane or transverse (T) tubules). This interaction occurs at special structures named calcium release units (CRUs). CRUs contain two proteins essential to e-c coupling: dihydropyridine receptors (DHPRs), L-type Ca(2+) channels of exterior membranes; and ryanodine receptors (RyRs), the Ca(2+) release channels of the SR. Special CRUs in cardiac muscle are constituted by SR domains bearing RyRs that are not associated with exterior membranes (the corbular and extended junctional SR or EjSR). Functional groupings of RyRs and DHPRs within calcium release units have been named couplons, and the term is also loosely applied to the EjSR of cardiac muscle. Knowledge of the structure, geometry, and disposition of couplons is essential to understand the mechanism of Ca(2+) release during muscle activation. This paper presents a compilation of quantitative data on couplons in a variety of skeletal and cardiac muscles, which is useful in modeling calcium release events, both macroscopic and microscopic ("sparks").  相似文献   

12.
Using a strain measurement technique, we studied the mechanisms of the effect of a nitric oxide (NO) donor, nitroglycerin (NG), on contractions of smooth muscles of the main pulmonary artery of the rabbit induced by phenylephrine and caffeine in normal Krebs solution (NKS) or in nominally calcium-free solution (NCFS). Phenylephrine applications caused contractions consisting of an initial fast phasic low-amplitude component followed by a tonic higher-amplitude component. After caffeine-induced monophasic low-amplitude contraction, tension of the smooth muscle strip shifted below the conventional zero. Addition of NG to NKS resulted in a decrease in the smooth muscle tension below the conventional zero. Under the influence of NG, the initial phasic component of phenylephrine-induced contraction was partially suppressed, whereas the next tonic component was suppressed to a greater extent. At the same time, NG exerted nearly no influence on the amplitude of caffeine-induced contractions. Washing out by NKS of phenylephrine dissolved in NCFS resulted in initiation of a fast phasic high-amplitude contraction. Such a contraction did not develop either in the presence of NG or phenylephrine in NCFS or in the case of washing out of caffeine dissolved in NCFS. Our findings allow us to conclude that phenylephrine or caffeine added to the superfusate induce contractions of the smooth muscle cells (SMC) of the main pulmonary artery of the rabbit due to activation of Ca2+ release from the respective intracellular calcium stores. In addition, calcium ions entering SMC through the calcium channels of the plasma membrane are also involved in activation of the phenylephrine-induced contraction. The inhibitory effect of NG on the phenylephrine-induced contraction is related to the influence of NO on the release of Ca2+ from the inositol trisphosphate-sensitive intracellular calcium store and receptor-operated inflow of Ca2+ to SMC. Nitroglycerin did not significantly influence the caffeine-induced contraction and, therefore, Ca2+ release from the caffeine-sensitive store.  相似文献   

13.
Current multi-scale computational models of ventricular electromechanics describe the full process of cardiac contraction on both the micro- and macro- scales including: the depolarization of cardiac cells, the release of calcium from intracellular stores, tension generation by cardiac myofilaments, and mechanical contraction of the whole heart. Such models are used to reveal basic mechanisms of cardiac contraction as well as the mechanisms of cardiac dysfunction in disease conditions. In this paper, we present a methodology to construct finite element electromechanical models of ventricular contraction with anatomically accurate ventricular geometry based on magnetic resonance and diffusion tensor magnetic resonance imaging of the heart. The electromechanical model couples detailed representations of the cardiac cell membrane, cardiac myofilament dynamics, electrical impulse propagation, ventricular contraction, and circulation to simulate the electrical and mechanical activity of the ventricles. The utility of the model is demonstrated in an example simulation of contraction during sinus rhythm using a model of the normal canine ventricles.  相似文献   

14.
Arrhythmias, a common cause of sudden cardiac death, can occur in structurally normal hearts, although the mechanism is not known. In cardiac muscle, the ryanodine receptor (RyR2) on the sarcoplasmic reticulum releases the calcium required for muscle contraction. The FK506 binding protein (FKBP12.6) stabilizes RyR2, preventing aberrant activation of the channel during the resting phase of the cardiac cycle. We show that during exercise, RyR2 phosphorylation by cAMP-dependent protein kinase A (PKA) partially dissociates FKBP12.6 from the channel, increasing intracellular Ca(2+) release and cardiac contractility. FKBP12.6(-/-) mice consistently exhibited exercise-induced cardiac ventricular arrhythmias that cause sudden cardiac death. Mutations in RyR2 linked to exercise-induced arrhythmias (in patients with catecholaminergic polymorphic ventricular tachycardia [CPVT]) reduced the affinity of FKBP12.6 for RyR2 and increased single-channel activity under conditions that simulate exercise. These data suggest that "leaky" RyR2 channels can trigger fatal cardiac arrhythmias, providing a possible explanation for CPVT.  相似文献   

15.
Bladder smooth muscle contraction is mediated by both direct calcium entry through the cell membrane, and by calcium induced calcium release (CICR) from the sarcoplasmic reticulum (SR) storage sites. Ryanodine is a neutral plant alkaloid which binds to an ion channel located on the SR membrane. Its effects in cardiac skeletal muscle are well characterized where it inibits the efflux of intracellular calcium stores, and thus it serves as a negative inotrope. It has also been shown that in the develpping rabbit myocardium, there is a gradual increase in the expression of this ion channel. Little has been written about the expression and function of the ryanodine sensitive ion channel in smooth muscle. Recently we have shown that neonatal rabbit bladder smooth muscle is not very sensitive to ryanodine, while that from mature rabbits is extremely sensitive. This leads us to quantify the expression of the ryanodine sensitive ion channel. In this paper we demonstrate that the Kd values do not change to any significant degree with normal rabbit bladder development. However the Bmax values for 3 day, 2, 4, 6, and 8 week rabbit bladder smooth muscle are 7, 10, 15, 29, and 44 fmol specifically bound ryanodine/mg protein. The differences between the neonatal groups and the mature groups are significant (P<0.5). This increase in ryanodine sensitive ion channel expression with normal growth would suggest that with normal maturation, the bladder smooth muscle cell acquires an increased pool of sequestrered intracellular calcium. This would follow a similar pattern of development that has already been described in rabbit myocardium.  相似文献   

16.
Ryanodine receptors (RyRs) are intracellular calcium release channels that participate in controlling cytosolic calcium levels. At variance with the probably ubiquitous inositol 1,4,5-trisphosphate-operated calcium channels (1,4,5-trisphosphate receptors), RyRs have been mainly regarded as the calcium release channels controlling skeletal and cardiac muscle contraction. Increasing evidence has recently suggested that RyRs may be more widely expressed, but this has never been extensively examined. Therefore, we cloned three cDNAs corresponding to murine RyR homologues to carry a comprehensive analysis of their expression in murine tissues. Here, we report that the three genes are expressed in almost all tissues analyzed, where tissue-specific patterns of expression were observed. In the uterus and vas deferens, expression of RyR3 was localized to the smooth muscle component of these organs. In the testis, expression of RyR1 and RyR3 was detected in germ cells. RyR mRNAs were also detected in in vitro-cultured cell lines. RyR1, RyR2, and RyR3 mRNA were detected in the cerebrum and in the cerebellum. In situ analysis revealed a cell type-specific pattern of expression in the different regions of the central nervous system. The differential expression of the three ryanodine receptor genes in the central nervous system was also confirmed using specific antibodies against the respective proteins. This widespread pattern of expression suggests that RyRs may participate in the regulation of intracellular calcium homeostasis in a range of cells wider than previously recognized.  相似文献   

17.
Different intracellular processes are selectively controlled by a signalling system based on transient rises or oscillations of cytoplasmic calcium concentration, which transmit extracellular signals at subcellular level. When treated with a subthreshold concentration of caffeine, skeletal muscle cells provide a suitable preparation to study mechanisms which generate repetitive calcium transients. Based on optical diffraction measurements of local contractions of individual sarcomeres, we have shown substantial enhancement of spontaneous repetitive calcium release in the presence of subthreshold caffeine concentration. Calcium release propagates to neighbor calcium sources and forms slow contraction waves. A power spectra density analysis has revealed parameters of the time course of these events. However, substantial amounts of calcium released in sarcomeres are not synchronized.  相似文献   

18.
M2 receptor stimulation results in the gating of nonselective cation channels in several smooth muscle cell types. However the requirement for current activation includes a rise in cytosolic calcium mediated by M3 receptor induced calcium release. This complex signaling system confers substantial complexity on the interpretation of pharmacological experiments. M2 and M3 receptor stimulation has also been linked to the inhibition of potassium channels in smooth muscle. These signaling events are likely to play important roles in excitation/contraction coupling.  相似文献   

19.
The intestinal muscles of Procambarus clarkii are striated and yet they are specialized to produce slow peristaltic waves of contraction, not unlike those seen in vertebrate visceral smooth muscle. These muscles cannot be tetanized either by repetitive stimulation or by elevated potassium saline. The excitation-contraction (E-C) coupling mechanism was explored and compared with that known in crustacean skeletal muscle. Contraction is dependent on external Ca2+ which triggers the release of intracellular calcium from the sarcoplasmic reticulum (SR) via calcium-induced calcium release (CICR). Whereas contraction force is proportional to [Ca2+]o up to that in normal saline (13.4 mM), higher levels of Ca2+ reduce force. Ryanodine, which blocks calcium release from the SR, abolishes electrically stimulated contractions and CICR. Relaxation is achieved by removal of calcium from the cytosol in at least two ways, first by the re-loading of calcium into the SR by Ca2+-ATPases and second by the movement of calcium out of the cell by extruding it across the sarcolemma via Na+/Ca2+-exchangers. It is hypothesized that the inability of this muscle to show tetanus arises from inactivation of the voltage-gated calcium channels by high calcium. This is supported by the result that caffeine application causes an increase in tonus and size of phasic contractions by circumventing the sarcolemma and dumping SR calcium stores.  相似文献   

20.
Role of creatine phosphokinase in cellular function and metabolism.   总被引:9,自引:0,他引:9  
This paper summarizes the data concerning the role of the creatine phosphokinase system in muscle cells with main attention to the cardiac muscle. Creatine phosphokinase isoenzymes play a key role in the intracellular energy transport from mitochondria to myofibrils and other sites of energy utilization. Due to the existence of the creatine phosphate pathway for energy transport, intracellular creatine phosphate concentration is apparently an important regulatory factor for muscle contraction which influences the contractile force by determining the rate of regeneration of ATP directly available for myosin ATPase, and at the same time controls the activator calcium entry into the myoplasm across the surface membrane of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号