首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu W  Ahlsen G  Baker D  Shapiro L  Zipursky SL 《Neuron》2012,74(2):261-268
Dscam1 potentially encodes 19,008 ectodomains of a cell recognition molecule of the immunoglobulin (Ig) superfamily through alternative splicing. Each ectodomain, comprising a unique combination of three variable (Ig) domains, exhibits isoform-specific homophilic binding in?vitro. Although we have proposed that the ability of Dscam1 isoforms to distinguish between one another is crucial for neural circuit assembly, via a process called self-avoidance, whether recognition specificity is essential in?vivo has not been addressed. Here we tackle this issue by assessing the function of Dscam1 isoforms with altered binding specificities. We generated pairs of chimeric isoforms that bind to each other (heterophilic) but not to themselves (homophilic). These isoforms failed to support self-avoidance or did so poorly. By contrast, coexpression of complementary isoforms within the same neuron restored self-avoidance. These data establish that recognition between Dscam1 isoforms on neurites of the same cell provides the molecular basis for self-avoidance.  相似文献   

2.
The Drosophila gene Dscam, encoding Down syndrome cell-adhesion molecule, is required for the development of neural circuits. Alternative splicing of Dscam mRNA potentially generates 38016 isoforms of a cell-surface recognition protein of the immunoglobulin superfamily. These isoforms include 19008 different ectodomains joined to one of two alternative transmembrane segments. Each ectodomain comprises a unique combination of three variable immunoglobulin domains. Biochemical studies support a model in which each isoform preferentially binds to the same isoform on opposing cell surfaces. This homophilic binding requires matching at all three variable immunoglobulin domains. These findings raise the intriguing possibility that specificity of binding by the Dscam isoforms mediates cell-surface recognition events required for wiring the fly brain.  相似文献   

3.
Wojtowicz WM  Wu W  Andre I  Qian B  Baker D  Zipursky SL 《Cell》2007,130(6):1134-1145
Dscam encodes a family of cell surface proteins required for establishing neural circuits in Drosophila. Alternative splicing of Drosophila Dscam can generate 19,008 distinct extracellular domains containing different combinations of three variable immunoglobulin domains. To test the binding properties of many Dscam isoforms, we developed a high-throughput ELISA-based binding assay. We provide evidence that 95% (>18,000) of Dscam isoforms exhibit striking isoform-specific homophilic binding. We demonstrate that each of the three variable domains binds to the same variable domain in an opposing isoform and identify the structural elements that mediate this self-binding of each domain. These studies demonstrate that self-binding domains can assemble in different combinations to generate an enormous family of homophilic binding proteins. We propose that this vast repertoire of Dscam recognition molecules is sufficient to provide each neuron with a unique identity and homotypic binding specificity, thereby allowing neuronal processes to distinguish between self and nonself.  相似文献   

4.
Dscam is an immunoglobulin (Ig) superfamily protein required for the formation of neuronal connections in Drosophila. Through alternative splicing, Dscam potentially gives rise to 19,008 different extracellular domains linked to one of two alternative transmembrane segments, resulting in 38,016 isoforms. All isoforms share the same domain structure but contain variable amino acid sequences within three Ig domains in the extracellular region. We demonstrate that different isoforms exhibit different binding specificity. Each isoform binds to itself but does not bind or binds poorly to other isoforms. The amino acid sequences of all three variable Ig domains determine binding specificity. Even closely related isoforms sharing nearly identical amino acid sequences exhibit isoform-specific binding. We propose that this preferential homophilic binding specificity regulates interactions between cells and contributes to the formation of complex patterns of neuronal connections.  相似文献   

5.
Schmucker D  Flanagan JG 《Neuron》2004,44(2):219-222
For decades, it has been suggested that complex neural wiring might be specified by extensive diversity in receptor isoforms. Dscam is a cell surface protein with 38,016 potential alternatively spliced isoforms in the fly nervous system. Remarkable binding studies now show that Dscam isoform diversity indeed results in an unprecedented level of recognition diversity, showing isoform-specific homophilic binding. In vivo studies have begun to suggest models for use of Dscam diversity in neuron-target recognition, axon fasciculation, and neuron self-recognition.  相似文献   

6.
Homophilic Dscam interactions control complex dendrite morphogenesis   总被引:6,自引:0,他引:6  
Alternative splicing of the Drosophila gene Dscam results in up to 38,016 different receptor isoforms proposed to interact by isoform-specific homophilic binding. We report that Dscam controls cell-intrinsic aspects of dendrite guidance in all four classes of dendrite arborization (da) neurons. Loss of Dscam in single neurons causes a strong increase in self-crossing. Restriction of dendritic fields of neighboring class III neurons appeared intact in mutant neurons, suggesting that dendritic self-avoidance, but not heteroneuronal tiling, may depend on Dscam. Overexpression of the same Dscam isoforms in two da neurons with overlapping dendritic fields forced a spatial segregation of the two fields, supporting the model that dendritic branches of da neurons use isoform-specific homophilic interactions to ensure minimal overlap. Homophilic binding of the highly diverse extracellular domains of Dscam may therefore limit the use of the same "core" repulsion mechanism to cell-intrinsic interactions without interfering with heteroneuronal interactions.  相似文献   

7.
Shapiro L 《Neuron》2007,56(1):10-13
The Drosophila Dscams are immunoglobulin superfamily members produced from a single gene that is diversified by alternative splicing to produce a family of cell-surface proteins with over 19,000 different ectodomain isoforms. Dscams are critical for neuronal wiring, and mounting evidence suggests that they play a key role in self-avoidance between sister branches from neurons, which depends on homophilic self-recognition by Dscams. Two recent papers shed new light on Dscam recognition: first by showing that the vast majority of Dscam isoforms mediate specific homophilic binding and second by revealing the essence of the molecular basis of homophilic recognition by Dscams through high-resolution structural studies.  相似文献   

8.
We have determined the crystal structure of the ligand binding fragment of the neural cell adhesion molecule axonin-1/TAG-1 comprising the first four immunoglobulin (Ig) domains. The overall structure of axonin-1(Ig1-4) is U-shaped due to contacts between domains 1 and 4 and domains 2 and 3. In the crystals, these molecules are aligned in a string with adjacent molecules oriented in an anti-parallel fashion and their C termini perpendicular to the string. This arrangement suggests that cell adhesion by homophilic axonin-1 interaction occurs by the formation of a linear zipper-like array in which the axonin-1 molecules are alternately provided by the two apposed membranes. In accordance with this model, mutations in a loop critical for the formation of the zipper resulted in the loss of the homophilic binding capacity of axonin-1.  相似文献   

9.
The mechanism by which the neural cell adhesion molecule, N-CAM, mediates homophilic interactions between cells has been variously attributed to an isologous interaction of the third immunoglobulin (Ig) domain, to reciprocal binding of the two N-terminal Ig domains, or to reciprocal interactions of all five Ig domains. Here, we have used a panel of recombinant proteins in a bead binding assay, as well as transfected and primary cells, to clarify the molecular mechanism of N-CAM homophilic binding. The entire extracellular region of N-CAM mediated bead aggregation in a concentration- and temperature-dependent manner. Interactions of the N-terminal Ig domains, Ig1 and Ig2, were essential for bead binding, based on deletion and mutation experiments and on antibody inhibition studies. These findings were largely in accord with aggregation experiments using transfected L cells or primary chick brain cells. Additionally, maximal binding was dependent on the integrity of the intramolecular domain-domain interactions throughout the extracellular region. We propose that these interactions maintain the relative orientation of each domain in an optimal configuration for binding. Our results suggest that the role of Ig3 in homophilic binding is largely structural. Several Ig3-specific reagents failed to affect N-CAM binding on beads or on cells, while an inhibitory effect of an Ig3-specific monoclonal antibody is probably due to perturbations at the Ig2-Ig3 boundary. Thus, it appears that reciprocal interactions between Ig1 and Ig2 are necessary and sufficient for N-CAM homophilic binding, but that maximal binding requires the quaternary structure of the extracellular region defined by intramolecular domain-domain interactions.  相似文献   

10.
The Drosophila melanogaster Down syndrome cell adhesion molecule (Dscam) gene encodes an axon guidance receptor and can generate 38,016 different isoforms via the alternative splicing of 95 variable exons. Dscam contains 10 immunoglobulin (Ig), six Fibronectin type III, a transmembrane (TM), and cytoplasmic domains. The different Dscam isoforms vary in the amino acid sequence of three of the Ig domains and the TM domain. Here, we have compared the organization of the Dscam gene from three members of the Drosophila subgenus (D. melanogaster, D. pseudoobscura, and D. virilis), the mosquito Anopheles gambiae, and the honeybee Apis mellifera. Each of these organisms contains numerous alternative exons and can potentially synthesize tens of thousands of isoforms. Interestingly, most of the alternative exons in one species are more similar to one another than to the corresponding alternative exons in the other species. These observations provide strong evidence that many of the alternative exons have arisen by reiterative exon duplication and deletion events. In addition, these findings suggest that the expression of a large Dscam repertoire is more important for the development and function of the insect nervous system than the actual sequence of each isoform.  相似文献   

11.
The neural cell adhesion molecule, NCAM, mediates Ca(2+)-independent cell-cell and cell-substratum adhesion via homophilic (NCAM-NCAM) and heterophilic (NCAM-non-NCAM molecules) binding. NCAM plays a key role in neural development, regeneration, and synaptic plasticity, including learning and memory consolidation. The crystal structure of a fragment comprising the three N-terminal Ig modules of rat NCAM has been determined to 2.0 A resolution. Based on crystallographic data and biological experiments we present a novel model for NCAM homophilic binding. The Ig1 and Ig2 modules mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), whereas the Ig3 module mediates interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions) through simultaneous binding to the Ig1 and Ig2 modules. This arrangement results in two perpendicular zippers forming a double zipper-like NCAM adhesion complex.  相似文献   

12.
Schmucker D  Clemens JC  Shu H  Worby CA  Xiao J  Muda M  Dixon JE  Zipursky SL 《Cell》2000,101(6):671-684
A Drosophila homolog of human Down syndrome cell adhesion molecule (DSCAM), an immunoglobulin superfamily member, was isolated by its affinity to Dock, an SH3/SH2 adaptor protein required for axon guidance. Dscam binds directly to both Dock's SH2 and SH3 domains. Genetic studies revealed that Dscam, Dock and Pak, a serine/threonine kinase, act together to direct pathfinding of Bolwig's nerve, containing a subclass of sensory axons, to an intermediate target in the embryo. Dscam also is required for the formation of axon pathways in the embryonic central nervous system. cDNA and genomic analyses reveal the existence of multiple forms of Dscam with a conserved architecture containing variable Ig and transmembrane domains. Alternative splicing can potentially generate more than 38,000 Dscam isoforms. This molecular diversity may contribute to the specificity of neuronal connectivity.  相似文献   

13.
Mammalian L1 and avian Ng-CAM are homologous neural cell adhesion molecules (CAMs) that promote neurite outgrowth and cell adhesion in most neurons. Previous attempts to map these activities to discrete regions in the CAMs have suggested the involvement of a variety of different domains. However, these studies mainly used bacterially expressed proteins that were much less active on a molar basis than the native molecules. To define regions that are critical for maximal neurite outgrowth, we constructed and tested a panel of eukaryotically expressed proteins containing various extracellular segments of human L1 (hL1) or Ng-CAM. Our results indicate that Ig domains 1-4 of hL1 are critical for homophilic binding and neurite outgrowth; however this segment is less potent than the entire extracellular region. Optimal neurite outgrowth activity was seen with proteins containing all six Ig domains of hL1 or Ng-CAM. The adhesive properties of hL1 fragments correlated tightly with their neurite outgrowth activities, suggesting that these two processes are closely linked. These results suggest that Ig domains 1-4 form a structural cassette responsible for hL1 homophilic binding, while Ig domains 1-6 represent a functional region for optimal promotion of neurite outgrowth in vitro and possibly in vivo.  相似文献   

14.
Recent studies have uncovered the molecular basis of self-avoidance and tiling, two fundamental principles required for the formation of neural circuits. Both of these wiring strategies are established through homophilic repulsion between Dscam proteins expressed on opposing cell surfaces. In Drosophila, Dscam1 mediates self-avoidance, whereas Dscam2 mediates tiling. By contrast, phenotypes in the retina of the DSCAM mutant mouse indicate that DSCAM functions in both self-avoidance and tiling. These findings suggest that homophilic recognition molecules that have classically been defined as adhesive may also function as repulsive cues and that Dscam proteins specialize in this function.  相似文献   

15.
The L1 adhesion molecule is a 200-220-kDa membrane glycoprotein of the Ig superfamily implicated in important neural processes including neuronal cell migration, axon outgrowth, learning, and memory formation. L1 supports homophilic L1-L1 binding that involves several Ig domains but can also bind with high affinity to the proteoglycan neurocan. It has been reported that neurocan can block homophilic binding; however, the mechanism of inhibition and the precise binding sites in both molecules have not been determined. By using fusion proteins, site-directed mutagenesis, and peptide blocking experiments, we have characterized the neurocan-binding site in the first Ig-like domain of human L1. Results from molecular modeling suggest that the sequences involved in neurocan binding are localized on the surface of the first Ig domain and largely overlap with the G-F-C beta-strands proposed to interact with the fourth Ig domain during homophilic binding. This suggests that neurocan may sterically hinder a proper alignment of L1 domains. We find that the C-terminal portion of neurocan is sufficient to mediate binding to the first Ig domain of L1, and we suggest that the sushi domain cooperates with a glycosaminoglycan side chain in forming the binding site for L1.  相似文献   

16.
L1 is a cell adhesion molecule of the immunoglobulin (Ig) superfamily, critical for central nervous system development, and involved in several neuronal biological events. It is a type I membrane glycoprotein. The L1 ectodomain, composed of six Ig-like and five fibronectin (Fn) type-III domains, is involved in homophilic binding. Here, co-immunoprecipitation studies between recombinant truncated forms of human L1 expressed and purified from insect Spodoptera frugiperda Sf9 cells, and endogenous full-length L1 from human NT2N neurons, showed that the L1 ectodomain (L1/ECD) and L1/Ig1-4 interacted homophilically in trans, contrary to mutants L1/Ig1-3 and L1/Ig2-Fn5. All mutants were correctly folded as evaluated by combination of far-UV CD and fluorescence spectroscopy. Surface plasmon resonance analysis showed comparable dissociation constants of 116 +/- 2 and 130 +/- 6 nm for L1/ECD-L1/ECD and L1/ECD-L1/Ig1-4, respectively, whereas deletion mutants for Ig1 or Ig4 did not interact. Accordingly, in vivo, Sf9 cells stably expressing L1 were found to adhere only to L1/ECD- and L1/Ig1-4-coated surfaces. Furthermore, only these mutants bound to HEK293 cells overexpressing L1 at the cell surface. Enhancement of neurite outgrowth, which is the consequence of signaling events caused by L1 homophilic binding, was comparable between L1/ECD and L1/Ig1-4. Altogether, these results showed that domains Ig1 to Ig4 are necessary and sufficient for L1 homophilic binding in trans, and that the rest of the molecule does not contribute to the affinity under the conditions of the current study. Furthermore, they are compatible with a cooperative interaction between modules Ig1-Ig4 in a horseshoe conformation.  相似文献   

17.
The Down syndrome cell adhesion molecule, also known as Dscam, is a member of the immunoglobulin super family. Dscam plays an essential function in neuronal wiring and appears to be involved in innate immune reactions in insects. The deduced amino acid sequence of Dscam in the crustacean Pacifastacus leniusculus (PlDscam), encodes 9(Ig)-4(FNIII)-(Ig)-2(FNIII)-TM and it has variable regions in the N-terminal half of Ig2 and Ig3 and the complete Ig7 and in the transmembrane domain. The cytoplasmic tail can generate multiple isoforms. PlDscam can generate more than 22,000 different unique isoforms. Bacteria and LPS injection enhanced the expression of PlDscam, but no response in expression occurred after a white spot syndrome virus (WSSV) infection or injection with peptidoglycans. Furthermore, PlDscam silencing did not have any effect on the replication of the WSSV. Bacterial specific isoforms of PlDscam were shown to have a specific binding property to each tested bacteria, E. coli or S. aureus. The bacteria specific isoforms of PlDscam were shown to be associated with bacterial clearance and phagocytosis in crayfish.  相似文献   

18.
Dscam is an immunoglobulin (Ig) superfamily member that regulates axon guidance and targeting in Drosophila. Alternative splicing potentially generates 38,016 isoforms differing in their extracellular Ig and transmembrane domains. We demonstrate that Dscam mediates the sorting of axons in the developing mushroom body (MB). This correlates with the precise spatiotemporal pattern of Dscam protein expression. We demonstrate that MB neurons express different arrays of Dscam isoforms and that single MB neurons express multiple isoforms. Two different Dscam isoforms differing in their extracellular domains introduced as transgenes into single mutant cells partially rescued the mutant phenotype. Expression of one isoform of Dscam in a cohort of MB neurons induced dominant phenotypes, while expression of a single isoform in a single cell did not. We propose that different extracellular domains of Dscam share a common function and that differences in isoforms expressed on the surface of neighboring axons influence interactions between them.  相似文献   

19.
Down syndrome cell adhesion molecule (Dscam) seems likely to play a key role in the "alternative adaptive immunity" that has been reported in invertebrates. Dscam consists of a cytoplasmic tail that is involved in signal transduction and a hypervariable extracellular region that might use a pathogen recognition mechanism similar to that used by the vertebrate antibodies. In our previous paper, we isolated a unique tail-less form of Dscam from Litopenaeus vannamei. In this study, we report the first membrane-bound form of shrimp Dscam: PmDscam was isolated from Penaeus monodon, and it occurred in both membrane-bound and tail-less forms. Phylogenetic analysis showed that while the crustacean Dscams from shrimp and water flea did not share a single subclade, they were distinct from the invertebrate Dscam-like molecules and from the insecta Dscams. In the extracellular region, the variable regions of PmDscam were located in N-terminal Ig2, N-terminal Ig3 and the entire Ig7 domain. The PmDscam extracellular variants and transmembrane domain variants were produced by mutually exclusive alternative splicing events. The cytoplasmic tail variants were produced by exon inclusion/exclusion. Based on the genomic organization of Daphnia Dscam's cytoplasmic tail, we propose a model of how the shrimp Dscam genomic locus might use Type III polyadenylation to generate both the tail-less and membrane-bound forms.  相似文献   

20.
The external domains of Ig superfamily members are involved in multiple binding interactions, both homophilic and heterophilic, that initiate molecular events leading to the execution of diverse cell functions. Human carcinoembryonic antigen (CEA), an Ig superfamily cell surface glycoprotein used widely as a clinical tumor marker, undergoes homophilic interactions that mediate intercellular adhesion. Recent evidence supports the view that deregulated overexpression of CEA has an instrumental role in tumorigenesis through the inhibition of cell differentiation and the disruption of tissue architecture. The CEA-mediated block of the myogenic differentiation of rat L6 myoblasts depends on homophilic binding of its external domains. We show here that L6 transfectant cells expressing CEA can "trans-block" the myogenesis of juxtaposed differentiation-competent L6 transfectant cells expressing a deletion mutant of CEA (DeltaNCEA). This result implies the efficacy of antiparallel CEA-CEA interactions between cells in the differentiation block. In addition, DeltaNCEA can acquire differentiation blocking activity by cross-linking with specific anti-CEA antibodies, thus implying the efficacy of parallel CEA-CEA interactions on the same cell surface. The myogenic differentiation blocking activity of CEA was demonstrated by site-directed mutations to involve three subdomains of the amino-terminal domain, shown previously to be critical for its intercellular adhesion function. Monovalent Fab fragments of monoclonal antibodies binding to the region bridging subdomains 1 and 2 could both inhibit intercellular adhesion and release the myogenic differentiation block. Amino acid substitutions Q80A, Q80R, and D82N in subdomain 3, QNDTG, however, were found to completely ablate the differentiation blocking activity of CEA but had no effect on intercellular adhesion activity. A cyclized peptide representing this subdomain was the most effective at releasing the differentiation block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号