首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two sesterterpene sulfates (1-2) were isolated from tropical sponge Hippospongia sp. and their inhibitory activities against isocitrate lyase (ICL) from the rice blast fungus Mgnaporthe grisea were evaluated. Compound 3 was obtained by hydrolysis of compound 1. Compounds 1 and 3 were found to be potent ICL inhibitors, which inhibited appressorium formation and C(2) carbon utilization in M. grisea. Our results suggest that ICL plays crucial role in appressorium formation of M. grisea and is a new target for the protection of rice blast disease.  相似文献   

2.
Chemical investigations of the tropical marine sponge Hyrtios sp. have resulted in the isolation of a new alkaloid, 1-carboxy-6-hydroxy-3,4-dihydro-β-carboline (1) together with the known metabolites, 6-hydroxy-3,4-dihydro-1-oxo-β-carboline (2), 5-hydroxy-1H-indole-3-carboxylic acid methyl ester (3), serotonin (4), hyrtiosin A (5), 5-hydroxyindole-3-carbaldehyde (6), and hyrtiosin B (7). Their structures were elucidated on the basis of mass spectrometry and detailed 2D NMR spectroscopic data. Hyrtiosin B (7) displayed a potent inhibitory activity against isocitrate lyase (ICL) of Candida albicans with an IC50 value of 89.0 μM.  相似文献   

3.
Tris-aromatic furanones (1?4) and related bis-aromatic diesters (5 and 6) isolated from the dark red ascidian Synoicum sp., were evaluated for their inhibitory activities toward Candida albicans isocitrate lyase (ICL). These studies led to the identification of compounds 1, 3, and 4 as potent ICL inhibitors, with IC50 values of 7.62, 17.16, and 10.36 μM, respectively. Growth phenotype of ICL deletion mutants and Northern blot analysis data indicated that compound 1 inhibits the ICL expression in C. albicans under C2 carbon utilizing condition.  相似文献   

4.
A new series of bromophenols was synthesized by reactions of corresponding phenol analogs with bromine. The synthesized compounds were tested for inhibitory activity against isocitrate lyase (ICL) of Candida albicans and antimicrobial activity against gram-positive and, gram-negative bacteria and fungi. Among the synthesized bromophenols, bis(3-bromo-4,5-dihydroxyphenyl)methanone (11) and (3-bromo-4,5-dihydroxyphenyl)(2,3-dibromo-4,5-dihydroxyphenyl)methanone (12) displayed potent inhibitory activities against ICL, showing a stronger inhibitory effects than were found with natural bromophenol 1. The preliminary structure-activity relationships were investigated in order to determine the essential structural requirements for the inhibitory activities of these compounds against ICL of C. albicans.  相似文献   

5.
Bahamaolide A, a new macrocyclic lactone isolated from the culture of marine actinomycete Streptomyces sp. CNQ343, was evaluated for its inhibitory activity toward isocitrate lyase (ICL) from Candida albicans. These studies led to the identification of bahamaolide A as a potent ICL inhibitor with IC50 value of 11.82 μM. The growth phenotype of ICL deletion mutants and quantitative RT-PCR analyses indicated that this compound inhibits the ICL mRNA expression in C. albicans under C2-carbon-utilizing conditions. The present data highlight the potential for bahamaolide A treatment of C. albicans infections via inhibition of ICL activity.  相似文献   

6.
Inhibition of isocitrate lyase from Pseudomonas indigofera by itaconate   总被引:2,自引:0,他引:2  
The effect of the inhibitor itaconate on the activity of purified isocitrate lyase from Pseudomonas indigofera was examined for the reaction in both directions. Itaconate was found to equilibrate very slowly with its enzyme-bound form, so that a rapid change in itaconate concentration produced a gradual change in reaction velocity which eventually reached a new steady state. Kinetic studies of this relaxation phenomenon indicated that itaconate inhibited by binding the enzyme only after prior binding of glyoxylate, thus mimicking the kinetic behavior of succinate. On the basis of these studies, the dissociation constants for itaconate and glyoxylate from their respective enzyme-bound forms were calculated. More than half of the isocitrate lyase was complexed by glyoxylate during cleavage of saturating isocitrate. The rate constant for release of itaconate from the enzyme was calculated to be about 0.2 min?1. Direct binding of [14C]itaconate and [14C]succinate to isocitrate lyase at pH 6.8 was measured. Some binding of both ligands was found in the absence of glyoxylate, which was stimulated by the presence of 1 mm glyoxylate. These results suggest that there are up to three or more binding sites per active subunit, but that only one of these is catalytic.  相似文献   

7.
Inhibition of catalase activity of Candida albicans by serum   总被引:3,自引:0,他引:3  
A T Hendry 《Sabouraudia》1972,10(2):193-204
  相似文献   

8.
A library of extracts established from hundreds of marine organisms was screened by a cytotoxicity test. The active organic extract of an Okinawan marine sponge of the genus Dysidea was subjected to bioassay-guided fractionation to give three new polyoxygenated steroids dysideasterols F-H (1-3), together with two known related compounds (4 and 5). Their structures were confirmed by NMR and mass spectroscopic analyses. A characteristic structural feature of 2, 4 and 5 is an allylic epoxide, whereas this epoxide undergoes ring-opening by a neighbouring hydroxyl group to give a tetrahydrofuran ring in 1 and 3. All compounds 1-5 exhibited a similar cytotoxic effect with IC50 values of 0.15-0.3 μM against human epidermoid carcinoma A431 cells, demonstrating that the allylic epoxide moiety was not responsible for this cytotoxic effect.  相似文献   

9.
BackgroundCandida albicans (C. albicans) is an opportunistic pathogen that can cause superficial and life-threatening systemic infections in immunocompromised patients. However, the available clinically antifungals are limited. Therefore, the development of effective antifungal agents and therapies is urgently needed. Quinoline type of compounds were reported to possess potent anti-fungal effect. A series of quinoline derivatives were synthesized. Moreover their inhibitory activities and mechanisms on C. albicans were evaluated in this study.MethodsThe structure of D319 was identified by extensive spectroscopic analysis. The antifungal activity of D319 on C. albicans was evaluated using conventional methods, including the inhibition zone diameters with filter paper, Clinical Laboratory Standard Institute (CLSI) broth microdilution method in vitro, and in a murine model in vivo. Flow cytometry, fluorescence microscopy, western blot, knockout mutant and revertant strain techniques, and molecular modeling were applied to explore the mechanism of action of D319 in anti-Candida.ResultsD319 exhibited potent anti-Candida activity with Minimum Inhibitory Concentration value of 2.5 μg/mL in vitro. D319 significantly improved survival rate and reduced fungal burden compared to vehicle control in a murine model in vivo. The treatment of C. albicans with D319 resulted in fungal apoptosis through reactive oxygen species (ROS) accumulation in C. albicans. Furthermore, D319 inhibited the glyoxylate enzyme isocitrate lyase (ICL) of C. albicans, which was also confirmed by docking analysis.ConclusionsQuinoline compound D319 exhibited strong anti-Candida activities in vitro and in vivo models through inhibiting ICL activity and ROS accumulation in C. albicans.General significanceThis study showed that compound D319 as a novel isocitrate lyase inhibitor, would be a promising anti-Candida lead compound, which provided a potential application of this type of compounds in fighting clinical fungal infections. Furthermore, this study also supported ICL as a potential target for anti-Candida drug discovery.  相似文献   

10.
Avarol, a sesquiterpenoid hydroquinone, is a cytostatic agent, isolated from the sponge Dysidea avara. Autoradiographic studies show that in vivo (L5178y mouse lymphoma cells) avarol changes the labelling index in favour of the fraction of unlabelled cells (from 1.24 to 1.04). At concentrations below the 50% inhibition dose, the mitotic index increases from 6.5 +/- 0.5 to 10.4 +/- 0.8; at higher concentrations the formation of mitotic figures is almost completely suppressed. In vitro studies applying the methods of viscosimetry and electron microscopy demonstrate that avarol inhibits assembly of brain microtubule protein at an at least stoichiometric concentration ratio. Moreover, evidence is presented that the new antimitotic agent avarol inhibits protofilament elongation rather than lateral association of tubulin during protofilament formation. The results suggest that avarol interferes with polymerization of tubulin both in interphase and during mitosis.  相似文献   

11.
Phorbasin H is a diterpene acid of a bisabolane-related skeletal class isolated from the marine sponge Phorbas sp. In this study, we examined whether phorbasin H acted as a yeast-to-hypha transition inhibitor of Candida albicans. Growth experiments suggest that this compound does not inhibit yeast cell growth but inhibits filamentous growth in C. albicans. Northern blot analysis of signaling pathway components indicated that phorbasin H inhibited the expression of mRNAs related to cAMP–Efg1 pathway. The exogenous addition of db-cAMP to C. albicans cells had no influence on the frequency of hyphal formation. The expression of hypha-specific HWP1 and ALS3 mRNAs, both of which are positively regulated by the important regulator of cell wall dynamics Efg1, was significantly inhibited by the addition of phorbasin H. This compound also reduced the ability of C. albicans cells to adhere in a dose-dependent manner. Our findings suggest that phorbasin H impacts the activity of the cAMP–Efg1 pathway, thus leading to an alteration of C. albicans morphology.  相似文献   

12.
Isocitrate lyase (EC 4.1.3.1) was purified from acetate-grown cells of Candida brassicae E-17, by ammonium sulfate fractionation and DEAE-cellulose and Sephadex G-200 gel filtration column chromatographies. The purified enzyme was electrophoretically homogeneous. The molecular weight of this enzyme was 290,000 by gel filtration, and it was composed of four identical subunits whose molecular weights were 71,000 each. The pH and temperature optima were 6.8 and 37°C, respectively. The enzyme was stable from pH 6.0 to 7.0. The enzyme was activated by Mg2+ and the maximum activity was obtained with a concentration of 8 mM Mg2+. The enzyme was also activated by Mn2+ and Ba2+. The activity of this enzyme was stimulated by reducing agents. The Km values for dl-isocitrate were 1.5 mM in sodium phosphate buffer and 0.62 mM in imidazole-HCl buffer.  相似文献   

13.
This study examines the effects of Candida albicans on acethylcholine-induced, endothelium-dependent relaxation of thoracic aorta of rabbits, precontracted by phenylephrine (10(-7) M). Isolated vessel rings were incubated with C. albicans, Saccharomyces cerevisiae, or their mannans, and endothelium-dependent relaxation was measured by the induction of acethylcholine. Endothelium-dependent relaxation remained unaffected after 3 hours by either C. albicans or S. cerevisiae, or their mannans. After 24 hours, however, incubation with C. albicans had completely abolished relaxation, whereas relaxation was decreased by mannan of C. albicans and continued unaffected by S. cerevisiae. In contrast, no change was registered with a 24 hours incubation of C. Albicans in a sodium nitroprusside-induced, endothelium-independent, vascular smooth muscle relaxation. Microscopical investigation of the morphological structure of vessel walls revealed penetration of C. albicans on the intimal surface after 3 hours incubation and infiltration of the yeast through the vessel wall after 24 hours. No changes in vessel morphology occurred after 3 or 24 hours with S. cerevisiae or the mannan of C. albicans. These results show the ability of C. albicans to inhibit endothelium-dependent, but not endothelium-independent, relaxation of vascular smooth muscle and may have important implications for functional damage to endothelial cells and the regulation of vessel tone and blood flow.  相似文献   

14.
Isocitrate lyase was isolated in homogeneous state from a thermophilic Bacillus. The enzyme has a mol.wt. of 180000 and a pI of 4.5 and contains threonine as the N-terminal residue. It resembles in size the cognate enzyme from the mesophilic bacterium Pseudomonas indigofera, but is smaller than the enzyme from the eukaryotic fungus Neurospora crassa. All three lyases are tetramers and similar in amino acid composition, but the thermophile enzyme is distinctive from its mesophilic coutnerparts in possessing a lower catalytic-centre activity, greater resistance to chemical and thermal denaturation and fewer thiol groups and in being strongly activated by salts. Salt activation, by 0.4M-KCl, is about 3-fold at 30 degrees C and pH 6.8 and weakens progressively as the temperature or pH is raised. The activation is probably due to a change in the enzyme conformation caused by the electrolyte modifying the interaction between charged groups or between hydrophobic groups in protein. The possible significance of the salt activation, of the relative paucity of thiol groups and of the greater resistance to chemical denaturants is discussed. Besides its effect on the Vmax., KCl produces large increases in the magnitude of several kinetic parameters. A rise in reaction temperature from 30 to 55 degrees C produces a somewhat similar result. In view of these peculiar features, the patterns of inhibition of enzyme activity by compounds such as succinate and phosphoenolpyruvate were examined at 30 and 55 degrees C in the presence and absence of KCl.  相似文献   

15.
M Matsuoka  Y Ueda    S Aiba 《Journal of bacteriology》1980,144(2):692-697
Mutants of Candida lipolytica that were unable to grow on acetate but able to utilize succinate or glycerol as a sole carbon source were isolated. Amongst the mutants isolated, one strain (Icl-) was specifically deficient in isocitrate lyase activity, whereas another strain (Acos-) was deficient in acetyl coenzyme A synthetase activity. Since the Icl- mutant could not grow either on n-alkane or its derivatives, such as fatty acid and long-chain dicarboxylic acid, any anaplerotic route other than the glyoxylate pathway was inconceivable as far as growth on these carbon sources was concerned. Acetyl coenzyme A is most likely a metabolic inducer of isocitrate lyase and malate synthase, because the Acos- mutant was characterized by the least susceptibility to induction of these enzymes by acetate. The structural gene for isocitrate lyase was most probably impaired in the Icl- mutant, since revertants (Icl-) produced thermolabile isocitrate lyase. The production of isocitrate from n-alkane by the revertants was enhanced in comparison with the parental strain.  相似文献   

16.
Microsomal chitinase activity from Candida albicans   总被引:3,自引:0,他引:3  
Chitinase (E.C. 3.2.1.14) was characterized in microsomal fractions from yeast cells of Candida albicans. Following six washes with buffer (50 mM Bis-Tris.Cl, pH 6.5), enzyme activity of microsomes fell markedly to 0.3% of total and 6% of the specific activity detected in the low-speed supernatant (9000 X g) of a cell lysate. An apparently zymogenic, microsomal chitinase activity became more readily detectable with washing and after six washes enzyme activity was activated 1.7-fold following pre-incubation with trypsin. The following properties of microsomal chitinase were closely comparable with those for cytosolic chitinase (indicated in parentheses): Km = 2.1 mg chitin per ml (2.9 mg chitin per ml); temperature optimum = 45 degrees C (45 degrees C); inhibition by allosamidin competitive, Ki = 0.29 microM (competitive, Ki = 0.23 microM). A range of detergents solubilized and activated microsomal chitinase in a highly specific manner. Following density gradient centrifugation of microsomes, chitinase was distributed approximately evenly throughout the gradient suggesting that microsomal chitinase is not associated exclusively with any one membrane component. The possible morphogenetic role of microsomal chitinase is discussed in relation to the potential of this enzyme as a target for highly specific antifungal agents.  相似文献   

17.
In Saccharomyces cerevisiae, the glyoxylate cycle is controlled through the posttranslational regulation of its component enzymes, such as isocitrate lyase (ICL), which catalyzes the first unique step of the cycle. The ICL of S. cerevisiae (ScIcl1) is tagged for proteasomal degradation through ubiquitination by a multisubunit ubiquitin ligase (the glucose-induced degradation-deficient (GID) complex), whereas that of the pathogenic yeast Candida albicans (CaIcl1) escapes this process. However, the reason for the ubiquitin targeting specificity of the GID complex for ScIcl1 and not for CaIcl1 is unclear. To gain some insight into this, in this study, the crystal structures of apo ScIcl1 and CaIcl1 in complex with formate and the cryogenic electron microscopy structure of apo CaIcl1 were determined at a resolution of 2.3, 2.7, and 2.6 Å, respectively. A comparison of the various structures suggests that the orientation of N-terminal helix α1 in S. cerevisiae is likely key to repositioning of ubiquitination sites and contributes to the distinction found in C. albicans ubiquitin evasion mechanism. This finding gives us a better understanding of the molecular mechanism of ubiquitin-dependent ScIcl1 degradation and could serve as a theoretical basis for the research and development of anti-C. albicans drugs based on the concept of CaIcl1 ubiquitination.  相似文献   

18.
19.
Candida albicans is the most virulent Candida species of medical importance, which presents a great threat to immunocompromised individuals such as HIV patients. Currently, there are only four classes of antifungal agents available for treating fungal infections: azoles, polyenes, pyrimidines, and echinocandins. The fast spread of multidrug resistant C. albicans strains has increased the demand for new antifungal drugs. In this study, we demonstrate the antifungal activity of brominated furanones on C. albicans. Studying the structure and activity of this class of furanones reveals that the exocyclic vinyl bromide conjugated with the carbonyl group is the most important structural element for fungal inhibition. Furthermore, gene expression analysis using DNA microarrays showed that 3 μg/mL of 4-bromo-5Z-(bromomethylene)-3-butylfuran-2-one (BF1) upregulated 32 C. albicans genes with functions of stress response, NADPH dehydrogenation, and small-molecule transport, and repressed 21 genes involved mainly in cell-wall maintenance. Interestingly, only a small overlap is observed between the gene expression changes caused by the representative brominated furanone (BF1) in this study and other antifungal drugs reported in literature. This result suggests that brominated furanones and other antifungal drugs may target different fungal proteins or genes. The existence of such new targets provides an opportunity for developing new agents to control fungal pathogens which are resistant to currently available drugs.  相似文献   

20.
Cell associated collagenolytic activity of Candida albicans was quantified by measuring the degradation of synthetic peptide 2-furanacryloyl-Leu-Gly-Pro-Ala (FALGPA), which is a specific substrate for collagenase, by the freeze-thaw procedure method. This collagenolytic activity was enhanced by cells cultured in the presence of bovine serum albumin (BSA) in culture medium. However, this activity was inhibited in the presence of ethylenediaminetetraacetic acid disodium salt (EDTA-2Na), but not by the serine proteinase inhibitor p-amidinophenyl methanesulfonyl fluoride (APMSF), nor the aspartyl proteinase inhibitor pepstatin A. These results suggested the presence of a metalloenzyme on pericellular C. albicans. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号