首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NS3 (dengue virus non-structural protein 3) serine protease of dengue virus is an essential component for virus maturation, thus representing an attractive target for the development of antiviral drugs directed at the inhibition of polyprotein processing. In the present study, we have investigated determinants of substrate specificity of the dengue virus NS3 protease by using internally quenched fluorogenic peptides containing Abz (o-aminobenzoic acid; synonymous to anthranilic acid) and 3-nitrotyrosine (nY) representing both native and chimaeric polyprotein cleavage site sequences. By using this combinatorial approach, we were able to describe the substrate preferences and determinants of specificity for the dengue virus NS2B(H)-NS3pro protease. Kinetic parameters (kcat/K(m)) for the hydrolysis of peptide substrates with systematic truncations at the prime and non-prime side revealed a length preference for peptides spanning the P4-P3' residues, and the peptide Abz-RRRRSAGnY-amide based on the dengue virus capsid protein processing site was discovered as a novel and efficient substrate of the NS3 protease (kcat/K(m)=11087 M(-1) x s(-1)). Thus, while having confirmed the exclusive preference of the NS3 protease for basic residues at the P1 and P2 positions, we have also shown that the presence of basic amino acids at the P3 and P4 positions is a major specificity-determining feature of the dengue virus NS3 protease. Investigation of the substrate peptide Abz-KKQRAGVLnY-amide based on the NS2B/NS3 polyprotein cleavage site demonstrated an unexpected high degree of cleavage efficiency. Chimaeric peptides with combinations of prime and non-prime sequences spanning the P4-P4' positions of all five native polyprotein cleavage sites revealed a preponderant effect of non-prime side residues on the K(m) values, whereas variations at the prime side sequences had higher impact on kcat.  相似文献   

2.
We developed sensitive substrates for cysteine proteases and specific substrates for serine proteases based on short internally quenched fluorescent peptides, Abz-F-R-X-EDDnp, where Abz (ortho-aminobenzoic acid) is the fluorescent donor, EDDnp [N-(ethylenediamine)-2,4-dinitrophenyl amide] is the fluorescent quencher, and X are natural amino acids. This series of peptides is compared to the commercially available Z-F-R-MCA, where Abz and X replace carbobenzoxy (Z) and methyl-7-aminocoumarin amide (MCA), respectively; and EDDnp can be considered a P(2)' residue. Whereas MCA is the fluorescent probe and cannot be modified, in the series Abz-F-R-X-EDDnp the amino acids X give the choice of matching the specificity of the S(1)' enzyme subsite, increasing the substrate specificity for a particular protease. All Abz-F-R-X-EDDnp synthesized peptides (for X = Phe, Leu, Ile, Ala, Pro, Gln, Ser, Lys, and Arg) were assayed with papain, human cathepsin L and B, trypsin, human plasma, and tissue kallikrein. Abz-F-R-L-EDDnp was the best substrate for papain and Abz-F-R-R-EDDnp or Abz-F-R-A-EDDnp was the more susceptible to cathepsin L. Abz-F-R-L-EDDnp was able to detect papain in the range of 1 to 15 pM. Human plasma kallikrein hydrolyzed Abz-F-R-R-EDDnp with significant efficiency (k(cat)/K(m) = 1833 mM(-1) s(-1)) and tissue kallikrein was very selective, hydrolyzing only the peptides Abz-F-R-A-EDDnp (k(cat)/K(m) = 2852 mM(-1) s(-1)) and Abz-F-R-S-EDDnp (k(cat)/K(m) = 4643 mM(-1) s(-1)). All Abz-F-R-X-EDDnp peptides were resistant to hydrolysis by thrombin and activated factor X.  相似文献   

3.
Regulated proteolysis by the two-component NS2B/NS3 protease of dengue virus is essential for virus replication and the maturation of infectious virions. The functional similarity between the NS2B/NS3 proteases from the four genetically and antigenically distinct serotypes was addressed by characterizing the differences in their substrate specificity using tetrapeptide and octapeptide libraries in a positional scanning format, each containing 130,321 substrates. The proteases from different serotypes were shown to be functionally homologous based on the similarity of their substrate cleavage preferences. A strong preference for basic amino acid residues (Arg/Lys) at the P1 positions was observed, whereas the preferences for the P2-4 sites were in the order of Arg > Thr > Gln/Asn/Lys for P2, Lys > Arg > Asn for P3, and Nle > Leu > Lys > Xaa for P4. The prime site substrate specificity was for small and polar amino acids in P1' and P3'. In contrast, the P2' and P4' substrate positions showed minimal activity. The influence of the P2 and P3 amino acids on ground state binding and the P4 position for transition state stabilization was identified through single substrate kinetics with optimal and suboptimal substrate sequences. The specificities observed for dengue NS2B/NS3 have features in common with the physiological cleavage sites in the dengue polyprotein; however, all sites reveal previously unrecognized suboptimal sequences.  相似文献   

4.
Thrombin is an allosteric protease controlled through exosites flanking the catalytic groove. Binding of a peptide derived from hirudin (Hir(52-65)) and/or of heparin to these opposing exosites alters catalysis. We have investigated the contribution of subsites S(2)' and S(3)' to this allosteric transition by comparing the hydrolysis of two sets of fluorescence-quenched substrates having all natural amino acids at positions P(2)' and P(3)'. Regardless of the amino acids, Hir(52-65) decreased, and heparin increased the k(cat)/K(m) value of hydrolysis by thrombin. Several lines of evidence have suggested that Glu(192) participates in this modulation. We have examined the role of Glu(192) by comparing the catalytic activity of thrombin and its E192Q mutant. Mutation substantially diminishes the selectivity of thrombin. The substrate with the "best" P(2)' residue was cleaved with a k(cat)/K(m) value only 49 times higher than the one having the "least favorable" P(2)' residue (versus 636-fold with thrombin). Mutant E192Q also lost the strong preference of thrombin for positively charged P(3)' residues and its strong aversion for negatively charged P(3)' residues. Furthermore, both Hir(52-65) and heparin increased the k(cat)/K(m) value of substrate hydrolysis. We conclude that Glu(192) is critical for the P(2)' and P(3)' specificities of thrombin and for the allostery mediated through exosite 1.  相似文献   

5.
The full-length and ectodomain forms of beta-site APP cleavage enzyme (BACE) have been cloned, expressed in Sf9 cells, and purified to homogeneity. This aspartic protease cleaves the amyloid precursor protein at the beta-secretase site, a critical step in the Alzheimer's disease pathogenesis. Comparison of BACE to other aspartic proteases such as cathepsin D and E, napsin A, pepsin, and renin revealed little similarity with respect to the substrate preference and inhibitor profile. On the other hand, these parameters are all very similar for the homologous enzyme BACE2. Based on a collection of decameric substrates, it was found that BACE has a loose substrate specificity and that the substrate recognition site in BACE extends over several amino acids. In common with the aspartic proteases mentioned above, BACE prefers a leucine residue at position P1. Unlike cathepsin D etc., BACE accepts polar or acidic residues at positions P2'0 and P1 but prefers bulky hydrophobic residues at position P3. BACE displays poor kinetic constants toward its known substrates (wild-type substrate, SEVKM/DAEFR, K(m) = 7 microm, K(cat) = 0.002 s(-1); Swedish mutant, SEVNL/DAEFR, K(m) = 9 microm, K(cat) = 0.02 s(-1)). A new substrate (VVEVDA/AVTP, K(m) = 1 microm, K(cat) = 0.004) was identified by serendipity.  相似文献   

6.
The influence of the P1 amino acid on the substrate selectivity, the catalytic parameters K(m) and k(cat), of carboxypeptidase M (CPM) (E.C. 3.4.17.12) was systematically studied using a series of benzoyl-Xaa-Arg substrates. CPM had the highest catalytic efficiency (k(cat)/K(m)) for substrates with Met, Ala and aromatic amino acids in the penultimate position and the lowest with amino acids with branched side-chains. Substrates with Pro in P1 were not cleaved in similar conditions. The P1 substrate preference of CPM differed from that of two other members of the carboxypeptidase family, CPN (CPN/CPE subfamily) and CPB (CPA/CPB subfamily). Aromatic P1 residues discriminated most between CPM and CPN. The type of P2 residue also influenced the k(cat) and K(m) of CPM. Extending the substrate up to P7 had little effect on the catalytic parameters. The substrates were modelled in the active site of CPM. The results indicate that P1-S1 interactions play a role in substrate binding and turn-over.  相似文献   

7.
The aim of this study was the development of a sensitive and specific substrate for protease A (PrtA), a serralysin-like metzincin from the entomopathogenic microorganism, Photorhabdus. First, cleavage of three biological peptides, the A and B chains of insulin and beta-lipotropin, and of 15 synthetic peptides, was investigated. In the biological peptides, a preference for the hydrophobic residues Ala, Leu and Val was observed at three substrate positions, P2, P1' and P2'. At these positions in the synthetic peptides the preferred residues were Val, Ala and Val, respectively. They contributed to the efficiency of hydrolysis in the order P1' > P2 > P2'. Six amino acids of the synthetic peptides were sufficient to reach the maximum rate of hydrolysis, in accordance with the ability of PrtA to cleave three amino acids from both the N- and the C-terminus of some fragments of biological peptides. Using the best synthetic peptide, a fluorescence-quenched substrate, N-(4-[4'(dimethylamino)phenylazo]benzoyl-EVYAVES-5-[(2-aminoethyl)amino]naphthalene-1-sulfonic acid, was prepared. The approximately 4 x 10(6) M(-1) x s(-1) specificity constant of PrtA (at K(m) approximately 5 x 10(-5) M and k(cat) approximately 2 x 10(2) s(-1)) on this substrate was the highest activity for a serralysin-type enzyme, allowing precise measurement of the effects of several inhibitors and pH on PrtA activity. These showed the characteristics of a metalloenzyme and a wide range of optimum pH, similar to other serralysins. PrtA activity could be measured in biological samples (Photorhabdus-infected insect larvae) without interference from other enzymes, which indicates that substrate selectivity is high towards PrtA. The substrate sensitivity allowed early (14 h post infection) detection of PrtA, which might indicate PrtA's participation in the establishment of infection and not only, as it has been supposed, in bioconversion.  相似文献   

8.
Internally quenched fluorescent peptides derived from neurotensin (pELYENKPRRPYIL) sequence were synthesized and assayed as substrates for neurolysin (EC 3.4.24.16), thimet oligopeptidase (EC 3.4.24.15 or TOP), and neprilysin (EC 3.4.24.11 or NEP). Abz-LYENKPRRPYILQ-EDDnp (where EDDnp is N-(2,4-dinitrophenyl)ethylenediamine and Abz is ortho-aminobenzoic acid) was derived from neurotensin by the introduction of Q-EDDnp at the C-terminal end of peptide and by the substitution of the pyroglutamic (pE) residue at N-terminus for Abz and a series of shorter peptides was obtained by deletion of amino acids residues from C-terminal, N-terminal, or both sides. Neurolysin and TOP hydrolyzed the substrates at P--Y or Y--I or R--R bonds depending on the sequence and size of the peptides, while NEP cleaved P-Y or Y-I bonds according to its S'(1) specificity. One of these substrates, Abz-NKPRRPQ-EDDnp was a specific and sensitive substrate for neurolysin (k(cat) = 7.0 s(-1), K(m) = 1.19 microM and k(cat)/K(m) = 5882 mM(-1). s(-1)), while it was completely resistant to NEP and poorly hydrolyzed by TOP and also by prolyl oligopeptidase (EC 3.4.21.26). Neurolysin concentrations as low as 1 pM were detected using this substrate under our conditions and its analogue Abz-NKPRAPQ-EDDnp was hydrolyzed by neurolysin with k(cat) = 14.03 s(-1), K(m) = 0.82 microM, and k(cat)/K(m) = 17,110 mM(-1). s(-1), being the best substrate so far described for this peptidase.  相似文献   

9.
The cytotoxic lymphocyte serine proteinase granzyme B induces apoptosis of abnormal cells by cleaving intracellular proteins at sites similar to those cleaved by caspases. Understanding the substrate specificity of granzyme B will help to identify natural targets and develop better inhibitors or substrates. Here we have used the interaction of human granzyme B with a cognate serpin, proteinase inhibitor 9 (PI-9), to examine its substrate sequence requirements. Cleavage and sequencing experiments demonstrated that Glu(340) is the P1 residue in the PI-9 RCL, consistent with the preference of granzyme B for acidic P1 residues. Ala-scanning mutagenesis demonstrated that the P4-P4' region of the PI-9 RCL is important for interaction with granzyme B, and that the P4' residue (Glu(344)) is required for efficient serpin-proteinase binding. Peptide substrates based on the P4-P4' PI-9 RCL sequence and containing either P1 Glu or P1 Asp were cleaved by granzyme B (k(cat)/K(m) 9.5 x 10(3) and 1.2 x 10(5) s(-1) M(-1), respectively) but were not recognized by caspases. A substrate containing P1 Asp but lacking P4' Glu was cleaved less efficiently (k(cat)/K(m) 5.3 x 10(4) s(-1) M(-1)). An idealized substrate comprising the previously described optimal P4-P1 sequence (Ile-Glu-Pro-Asp) fused to the PI-9 P1'-P4' sequence was efficiently cleaved by granzyme B (k(cat)/K(m) 7.5 x 10(5) s(-1) M(-1)) and was also recognized by caspases. This contrasts with the literature value for a tetrapeptide comprising the same P4-P1 sequence (k(cat)/K(m) 6.7 x 10(4) s(-1) M(-1)) and confirms that P' residues promote efficient interaction of granzyme B with substrates. Finally, molecular modeling predicted that PI-9 Glu(344) forms a salt bridge with Lys(27) of granzyme B, and we showed that a K27A mutant of granzyme B binds less efficiently to PI-9 and to substrates containing a P4' Glu. We conclude that granzyme B requires an extended substrate sequence for specific and efficient binding and propose that an acidic P4' substrate residue allows discrimination between early (high affinity) and late (lower affinity) targets during the induction of apoptosis.  相似文献   

10.
Escherichia coli OmpP is an F episome-encoded outer membrane protease that exhibits 71% amino acid sequence identity with OmpT. These two enzymes cleave substrate polypeptides primarily between pairs of basic amino acids. We found that, like OmpT, purified OmpP is active only in the presence of lipopolysaccharide. With optimal peptide substrates, OmpP exhibits high catalytic efficiency (k(cat)/K(m) = 3.0 x 10(6) M(-1)s(-1)). Analysis of the extended amino acid specificity of OmpP by substrate phage revealed that both Arg and Lys are strongly preferred at the P1 and P1' sites of the enzyme. In addition, Thr, Arg, or Ala is preferred at P2; Leu, Ala, or Glu is preferred at P4; and Arg is preferred at P3'. Notable differences in OmpP and OmpT specificities include the greater ability of OmpP to accept Lys at the P1 or P1', site as well as the prominence of Ser at P3 in OmpP substrates. Likewise, the OmpP P1 site could better accommodate Ser; as a result, OmpP was able to cleave a peptide substrate between Ser-Arg about 120 times more efficiently than was OmpT. Interestingly, OmpP and OmpT cleave peptides with three consecutive Arg residues at different sites, a difference in specificity that might be important in the inactivation of cationic antimicrobial peptides. Accordingly, we show that the presence of an F' episome results in increased resistance to the antimicrobial peptide protamine both in ompT mutants and in wild-type E. coli cells.  相似文献   

11.
The subsite specificity of rat nardilysin was investigated using fluorogenic substrates of the type 2-aminobenzoyl-GGX(1)X(2)RKX(3)GQ-ethylenediamine-2,4- dinitrophenyl, where P(2), P(2)', and P(3) residues were varied. (The nomenclature of Schechter and Berger (Schechter, I., and Berger, A. (1967) Biochem. Biophys. Res. Commun. 27, 157-162) is used where cleavage of a peptide occurs between the P(1) and P(1)' residues, and adjacent residues are designated P(2), P(3), P(2)', P(3)', etc.) There was little effect on K(m) among different residues at any of these positions. In contrast, residues at each position affected k(cat), with P(2) residues having the greatest effect. The S(3), S(2), and S(2)' subsites differed in their amino acid preference. Tryptophan and serine, which produced poor substrates at the P(2) position, were among the best P(2)' residues. The specificity at P(3) was generally opposite that of P(2). Residues at P(2), and to a lesser extent at P(3), influenced the cleavage site. At the P(2) position, His, Phe, Tyr, Asn, or Trp produced cleavage at the amino side of the first basic residue. In contrast, a P(2) Ile or Val produced cleavage between the dibasic pair. Other residues produced intermediate effects. The pH dependence for substrate binding showed that the enzyme prefers to bind a protonated histidine. A comparison of the effect of arginine or lysine at the P(1)' or P(1) position showed that there is a tendency to cleave on the amino side of arginine and that this cleavage produces the highest k(cat) values.  相似文献   

12.
A recombinant dengue 2 virus NS2B-NS3 protease (NS means non-structural virus protein) was compared with human furin for the capacity to process short peptide substrates corresponding to seven native substrate cleavage sites in the dengue viral polyprotein. Using fluorescence resonance energy transfer peptides to measure kinetics, the processing of these substrates was found to be selective for the Dengue protease. Substrates containing two or three basic amino acids (Arg or Lys) in tandem were found to be the best, with Abz-AKRRSQ-EDDnp being the most efficiently cleaved. The hydrolysis of dipeptide substrates Bz-X-Arg-MCA where X is a non-natural basic amino acid were also kinetically examined, the best substrates containing aliphatic basic amino acids. Our results indicated that proteolytic processing by dengue NS3 protease, tethered to its activating NS2B co-factor, was strongly inhibited by Ca2+ and kosmotropic salts of the Hofmeister's series, and significantly influenced by substrate modifications between S4 and S6'. Incorporation of basic non-natural amino acids in short peptide substrates had significant but differential effects on Km and k(cat), suggesting that further dissection of their influences on substrate affinity might enable the development of effective dengue protease inhibitors.  相似文献   

13.
Kumamolysin, a carboxyl proteinase from Bacillus novosp. MN-32, is characterized by its thermostability and insensitivity to aspartic proteinase inhibitors such as pepstatin, diazoacetyl-DL-norleucine methylester, and 1,2-epoxy-3-(p-nitro-phenoxy)propane. Here, its substrate specificity was elucidated using two series of synthetic chromogenic substrates: P(5)-P(4)-P(3)-P(2)-Phe*Nph (p-nitrophenylalanine: *cleavage site)-P(2)'-P(3)', in which the amino acid residues at the P(5)-P(2), P(2)' and P(3)' positions were systematically substituted. Among 74 substrates, kumamolysin was shown to hydrolyze Lys-Pro-Ile-Pro-Phe-Nph-Arg-Leu most effectively. The kinetic parameters of this peptide were K(m) = 41+/-5 microM, k(cat) = 176+/- 10 s(-1), and k(cat)/K(m) = 4.3+/-0.6 mM(-1) x s(-1). These systematic analyses revealed the following features: (i) Kumamolysin had a unique preference for the P(2) position. Kumamolysin preferentially hydrolyzed peptides having an Ala or Pro residue at the P(2) position; this was also observed for the pepstatin-insensitive carboxyl proteinase from Bacillus coagulans J-4 [J-4; Shibata et al. (1998) J. Biochem. 124, 642-647]. Other carboxyl proteinases, including Pseudomonas sp. 101 pepstatin-insensitive carboxyl proteinase (PCP) and Xanthomonas sp. T-22 pepstatin-insensitive carboxyl proteinase (XCP), preferred peptides having hydrophobic and bulky amino acid residue such as Leu at the P(2) position. (ii) Kumamolysin preferred such charged amino acid residues as Glu or Arg at the P(2)' position, suggesting that the S(2)' subsite of kumamolysin is occupied by hydrophilic residues, similar to that of PCP, XCP, and J-4. In general, the S(2)' subsite of pepstatin-sensitive carboxyl proteinases (aspartic proteinases) is hydrophobic in nature. Thus, the hydrophilic nature of the S(2)' subsite was confirmed to be a distinguishing feature of pepstatin-insensitive carboxyl proteinases from prokaryotes.  相似文献   

14.
An "inverse alanine scanning" peptide library approach has been developed to assess the substrate specificity of protein-tyrosine phosphatases (PTPases). In this method each Ala moiety in the parent peptide, Ac-AAAApYAAAA-NH(2), is separately and sequentially replaced by the 19 non-Ala amino acids to generate a library of 153 well defined peptides. The relatively small number of peptides allows the acquisition of explicit kinetic data for all library members, thereby furnishing information about the contribution of individual amino acids with respect to substrate properties. The approach was applied to protein-tyrosine phosphatase 1B (PTP1B) as a first example, and the highly potent peptide substrate Ac-ELEFpYMDYE-NH(2) (k(cat)/K(m) 2.2 +/- 0.05 x 10(7) M(-1) s(-1)) has been identified. More importantly, several heretofore unknown features of the substrate specificity of PTP1B were revealed. This includes the ability of PTP1B to accommodate acidic, aromatic, and hydrophobic residues at the -1 position, a strong nonpreference for Lys and Arg residues in any position, and the first evidence that residues well beyond the +1 position contribute to substrate efficacy.  相似文献   

15.
Positional-scanning combinatorial libraries of fluorescence resonance energy transfer peptides were used for the analyses of the S(3) to S(1)' subsites of the somatic angiotensin I-converting enzyme (ACE). Substrate specificity of ACE catalytic domains (C- and N-domains) was assessed in an effort to design selective substrates for the C-domain. Initially, we defined the S(1) specificity by preparing a library with the general structure Abz-GXXZXK(Dnp)-OH [Abz = o-aminobenzoic acid, K(Dnp) = N(epsilon)-2,4-dinitrophenyllysine, and X is a random residue], where Z was successively occupied with one of the 19 natural amino acids with the exception of Cys. The peptides containing Arg and Leu in the P(1) position had higher C-domain selectivity. In the sublibraries Abz-GXXRZK(Dnp)-OH, Abz-GXZRXK(Dnp)-OH, and Abz-GZXRXK(Dnp)-OH, Arg was fixed at P(1) so we could define the C-domain selectivity of the S(1)', S(2), and S(3) subsites. On the basis of the results from these libraries, we synthesized peptides Abz-GVIRFK(Dnp)-OH and Abz-GVILFK(Dnp)-OH which contain the most favorable residues for C-domain selectivity. Systematic reduction of the length of these two peptides resulted in Abz-LFK(Dnp)-OH, which demonstrated the highest selectivity for the recombinant ACE C-domain (k(cat)/K(m) = 36.7 microM(-1) s(-1)) versus the N-domain (k(cat)/K(m) = 0.51 microM(-1) s(-1)). The substrate binding of Abz-LFK(Dnp)-OH with testis ACE using a combination of conformational analysis and molecular docking was examined, and the results shed new light on the binding characteristics of the enzyme.  相似文献   

16.
The molecular basis of the substrate specificity of Clostridium histolyticum beta-collagenase was investigated using a combinatorial method. An immobilized positional peptide library, which contains 24,000 sequences, was constructed with a 7-hydroxycoumarin-4-propanoyl (Cop) fluorescent group attached at the N terminus of each sequence. This immobilized peptide library was incubated with C. histolyticum beta-collagenase, releasing fluorogenic fragments in the solution phase. The relative substrate specificity (k(cat)/K(m)) for each member of the library was determined by measuring fluorescence intensity in the solution phase. Edman sequencing was used to assign structure to subsites of active substrate mixtures. Collectively, the substrate preference for subsites (P(3)-P(4)') of C. histolyticum beta-collagenase was determined. The last position on the C-terminal side in which the identity of the amino acids affects the activity of the enzyme is P(4)', and an aromatic side chain is preferred in this position. The optimal P(1)'-P(3)' extended substrate sequence is P(1)'-Gly/Ala, P(2)'-Pro/Xaa, and P(3)'-Lys/Arg/Pro/Thr/Ser. The Cop group in either the P(2) or P(3) position is required for a high substrate activity with C. histolyticum beta-collagenase. S(2) and S(3) sites of the protease play a dominant role in fixing the substrate specificity. The immobilized peptide library proved to be a powerful approach for assessing the substrate specificity of C. histolyticum beta-collagenase, so it may be applied to the study of other proteases of interest.  相似文献   

17.
Protease-substrate interactions are governed by a variety of structural features. Although the substrate sequence specificities of numerous proteases have been established, "topological specificities," whereby proteases may be classified based on recognition of distinct three-dimensional structural motifs, have not. The aggrecanase members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family cleave a variety of proteins but do not seem to possess distinct sequence specificities. In the present study, the topological substrate specificity of ADAMTS-4 (aggrecanase-1) was examined using triple-helical or single-stranded poly(Pro) II helical peptides. Substrate topology modulated the affinity and sequence specificity of ADAMTS-4 with K(m) values indicating a preference for triple-helical structure. In turn, non-catalytic ADAMTS-4 domains were critical for hydrolysis of triple-helical and poly(Pro) II helical substrates. Comparison of ADAMTS-4 with MMP-1 (collagenase 1), MMP-13 (collagenase 3), trypsin, and thermolysin using triple-helical peptide (THP) and single-stranded peptide (SSP) substrates demonstrated that all five proteases possessed efficient "triple-helical peptidase" activity and fell into one of two categories: (k(cat)/K(m))(SSP) > (k(cat)/K(m))(THP) (thermolysin, trypsin, and MMP-13) or (k(cat)/K(m))(THP) > or = (k(cat)/K(m))(SSP) and (K(m))(SSP) > (K(m))(THP) (MMP-1 and ADAMTS-4). Overall these results suggest that topological specificity may be a guiding principle for protease behavior and can be utilized to design specific substrates and inhibitors. The triple-helical and single-stranded poly(Pro) II helical peptides represent the first synthetic substrates successfully designed for aggrecanases.  相似文献   

18.
The Cucurbita maxima trypsin inhibitor CMTI-III molecule was used as a vehicle to design and synthesize a series of trypsin chromogenic substrates modified in position P1: Ac-Ala-Val-Abu-Pro-X-pNA, where X = Orn, Lys, Arg, Har, Arg(NO(2)), Cit, Hci, Phe(p-CN), Phe(p-NH(2)); pNA = p-nitroanilide. The most active compounds (as determined by specificity constant k(cat)/K(m)) were peptides with the Arg and Lys residues in the position discussed. Changes in the length and the decrease of the positive charge of the amino acid residue side chain in position P(1) resulted in the decrease or loss of the affinity towards bovine beta-trypsin. Among peptides containing amino acid residues with uncharged side chains in position P1, only one with p-cyano-l-Phe revealed activity. These results correspond well with trypsin inhibitory activity of CMTI-III analogues modified in the equivalent position, indicating the same type of interaction between position P1 of the substrate or inhibitor and S1 site specificity of trypsin.  相似文献   

19.
O'Brien G  Quinsey NS  Whisstock JC  Pike RN 《Biochemistry》2003,42(50):14939-14945
The classical complement pathway, which plays a vital role in preventing infection, is initiated by the action of the serine proteases C1r and C1s. We have examined the hydrolysis of substrates representing cleavage sequences in the physiological substrates for C1s, C2 and C4. These studies showed that the P(1)'-P(4)' substrate residues of C2 and C4 conferred greater affinity of substrate for enzyme and also induced a sigmoidal dependence of enzyme velocity on substrate concentration. This indicates that the substrate gave rise to homotropic positive cooperative behavior in the enzyme. When C1s was in complex with C1q and C1r, as would occur under physiological conditions, the same behavior was observed, indicating that this mechanism is relevant in the complement pathway in vivo. We further investigated the requirements of C1s for prime side amino acids by examining a substrate library in which each of the P(1)'-P(4)' positions had been substituted by different classes of amino acids. This revealed that the P(1)' position was a major determinant of the selectivity of the enzyme, while certain substitutions at the P(1)'-P(4)' positions abolished the allosteric behavior, indicating that contact residues at these positions in the C1s enzyme must mediate the cooperativity. The studies reported here highlight the importance of prime subsites in C1s for interaction with its cognate substrates in the complement pathway and therefore yield greater understanding of the mechanism of interaction between this vital protease and its physiological substrates.  相似文献   

20.
Factor Xa (FXa) hydrolyzes two peptide bonds in prothrombin having (Glu/Asp)-Gly-Arg-(Thr/Ile) for P(3)-P(2)-P(1)-P(1)' residues, but the exact preferences of its catalytic groove remain largely unknown. To investigate the specificity of FXa, we synthesized full sets of fluorescence-quenched substrates carrying all natural amino acids (except Cys) in P(3), P(2), P(1)', P(2)', and P(3)' and determined the k(cat)/K(m) values of cleavage. Contrary to expectation, glycine was not the "best" P(2) residue; peptide with phenylalanine was cleaved slightly faster. In fact, FXa had surprisingly limited preferences, barely more pronounced than trypsin; in P(2), the ratio of the k(cat)/K(m) values for the most favorable side chain over the least was 289 (12 with trypsin), but in P(1)', this ratio was only 30 (versus 80 with trypsin). This unexpected selectivity undoubtedly distinguished FXa from thrombin, which exhibited ratios higher than 19,000 in P(2) and P(1)'. Thus, with respect to the catalytic groove, FXa resembles a low efficiency trypsin rather than the highly selective thrombin. The rates of cleavage of the peptidyl substrates were virtually identical whether or not FXa was in complex with factor Va, suggesting that the cofactor did not exert a direct allosteric control on the catalytic groove. We conclude that the remarkable efficacy of FXa within prothrombinase originates from exosite interaction(s) with factor Va and/or prothrombin rather than from the selectivity of its catalytic groove.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号