首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Termination-dependent reinitiation is used to co-ordinately regulate expression of the M1 and BM2 open-reading frames (ORFs) of the dicistronic influenza B segment 7 RNA. The start codon of the BM2 ORF overlaps the stop codon of the M1 ORF in the pentanucleotide UAAUG and ~10% of ribosomes terminating at the M1 stop codon reinitiate translation at the overlapping AUG. BM2 synthesis requires the presence of, and translation through, 45 nt of RNA immediately upstream of the UAAUG, known as the 'termination upstream ribosome binding site' (TURBS). This region may tether ribosomal 40S subunits to the mRNA following termination and a short region of the TURBS, motif 1, with complementarity to helix 26 of 18S rRNA has been implicated in this process. Here, we provide further evidence for a direct interaction between mRNA and rRNA using antisense oligonucleotide targeting and functional analysis in yeast cells. The TURBS also binds initiation factor eIF3 and we show here that this protein stimulates reinitiation from both wild-type and defective TURBS when added exogenously, perhaps by stabilising ribosome-mRNA interactions. Further, we show that the position of the TURBS with respect to the UAAUG overlap is crucial, and that termination too far downstream of the 18S complementary sequence inhibits the process, probably due to reduced 40S tethering. However, in reporter mRNAs where the restart codon alone is moved downstream, termination-reinitiation is inhibited but not abolished, thus the site of reinitiation is somewhat flexible. Reinitiation on distant AUGs is not inhibited in eIF4G-depleted RRL, suggesting that the tethered 40S subunit can move some distance without a requirement for linear scanning.  相似文献   

2.
Viruses utilize a number of translational control mechanisms to regulate the relative expression levels of viral proteins on polycistronic mRNAs. One such mechanism, that of termination-dependent reinitiation, has been described in a number of both negative- and positive-strand RNA viruses. Dicistronic RNAs which exhibit termination-reinitiation typically have a start codon of the 3'-ORF (open reading frame) proximal to the stop codon of the upstream ORF. For example, the segment 7 RNA of influenza B is dicistronic, and the stop codon of the M1 ORF and the start codon of the BM2 ORF overlap in the pentanucleotide UAAUG (the stop codon of M1 is shown in bold and the start codon of BM2 is underlined). Recent evidence has highlighted the potential importance of mRNA-rRNA interactions in reinitiation on caliciviral and influenza B viral RNAs, probably used to tether 40S ribosomal subunits to the RNA after termination in time for initiation factors to be recruited to the AUG of the downstream ORF. The present review summarizes how such interactions regulate reinitiation in an array of RNA viruses, and discusses what is known about reinitiation in viruses that do not rely on apparent mRNA-rRNA interactions.  相似文献   

3.
Cryphonectria hypovirus 1 (CHV1), associated with the picorna-like superfamily, infects the chestnut blight fungus and attenuates the virulence of the host fungus. The genomic RNA of the virus has two continuous open reading frames, A and B, separated by the pentanucleotide UAAUG. We present here evidence suggesting that ORF B is translated from genome-sized virus mRNA by a coupled termination/reinitiation mechanism mediated by the pentamer. In the coupled translation, the overlapping UAA and AUG triplets serve as the stop codon of ORF A and the initiator of ORF B, respectively. This was established by the use of a luciferase assay with a basic construct containing the ORF A sequence and the firefly luciferase gene while retaining the pentamer between the two coding sequences. The proportion of ribosomes reinitiating translation after terminating was determined to be 2.5–4.4% by three independent assay systems in fungal and insect cells. Use of a series of mutant constructs identified two sequence elements, the pentamer and the p40 sequence, that affect the efficiency of coupled translation and virus replication. Together, these results provide the first example of coupled translation facilitated by the pentanucleotide UAAUG in the kingdom Fungi. The mechanism by which the preceding p40-coding sequence promotes reinitiation is discussed.  相似文献   

4.
The calicivirus minor capsid protein VP2 is expressed via termination/reinitiation. This process depends on an upstream sequence element denoted termination upstream ribosomal binding site (TURBS). We have shown for feline calicivirus and rabbit hemorrhagic disease virus that the TURBS contains three sequence motifs essential for reinitiation. Motif 1 is conserved among caliciviruses and is complementary to a sequence in the 18 S rRNA leading to the model that hybridization between motif 1 and 18 S rRNA tethers the post-termination ribosome to the mRNA. Motif 2 and motif 2* are proposed to establish a secondary structure positioning the ribosome relative to the start site of the terminal ORF. Here, we analyzed human norovirus (huNV) sequences for the presence and importance of these motifs. The three motifs were identified by sequence analyses in the region upstream of the VP2 start site, and we showed that these motifs are essential for reinitiation of huNV VP2 translation. More detailed analyses revealed that the site of reinitiation is not fixed to a single codon and does not need to be an AUG, even though this codon is clearly preferred. Interestingly, we were able to show that reinitiation can occur at AUG codons downstream of the canonical start/stop site in huNV and feline calicivirus but not in rabbit hemorrhagic disease virus. Although reinitiation at the original start site is independent of the Kozak context, downstream initiation exhibits requirements for start site sequence context known for linear scanning. These analyses on start codon recognition give a more detailed insight into this fascinating mechanism of gene expression.  相似文献   

5.
The mechanism leading to reinitiation of translation after termination of protein synthesis in eukaryotes has not yet been resolved in detail. One open question concerns the way the post-termination ribosome is tethered to the mRNA to allow binding of the necessary initiation factors. In caliciviruses, a family of positive strand RNA viruses, the capsid protein VP2 is translated via a termination/reinitiation process. VP2 of the feline calicivirus is encoded in the 3'-terminal open reading frame 3 (ORF3) that overlaps with the preceding ORF2 by four nucleotides. In transient expression studies, the efficiency of VP2 expression was 20 times lower than that of the ORF2 proteins. The close vicinity of the ORF2 termination signal and the ORF3 AUG codon was crucial, whereas the AUG could be replaced by alternative codons. Deletion mapping revealed that the 3'-terminal 69 nucleotides of ORF2 are crucial for VP2 expression. This sequence contains two essential sequence motifs. The first motif is conserved among caliciviruses and complementary to part of the 18 S rRNA. In conclusion, VP2 is expressed in a translation termination/reinitiation process that is special because it requires a sequence element that could prevent dissociation of post-termination ribosomes via hybridization with 18 S rRNA.  相似文献   

6.
Meyers G 《Journal of virology》2007,81(18):9623-9632
The calicivirus minor capsid protein VP2 is expressed via reinitiation of protein synthesis after termination of translation of the preceding VP1 gene. A sequence element of about 80 nucleotides denoted "termination upstream ribosomal binding site" (TURBS) (25) is crucial for reinitiation. Deletion mapping in the TURBS of a rabbit calicivirus identified two short sequence motifs that were crucial for VP2 expression. Motif 1 is conserved among caliciviruses and is complementary to a sequence in the 18S rRNA. Single-residue exchanges in this motif severely impaired reinitiation when they affected the putative rRNA binding, whereas an exchange preserving complementarity had only a minor effect. Single exchanges in motif 2 were rather well tolerated, but the introduction of double exchanges almost blocked VP2 expression. In contrast, the deletion analyses showed that the RNA between the two motifs is of minor importance. The distance between motif 2 and the start site was found to be important, since deletions of increasing length in this sequence or upstream positioning of the start codon reduced VP2 expression stepwise to low levels, whereas multiple-nucleotide exchanges in this region were tolerated. The low flexibility of the arrangement of TURBS motif 2 and the start codon stand in marked contrast to the requirements with regard to the location of the stop codon of the preceding VP1 gene, which could be moved far downstream with continuous reduction, but without loss, of VP2 translation. The sequence mapping resulted in a refined model of the reinitiation mechanism leading to VP2 expression.  相似文献   

7.
8.
Previous nucleotide sequence analysis of RNA segment 7 of influenza B virus indicated that, in addition to the reading frame encoding the 248 amino acid M1 protein, there is a second overlapping reading frame (BM2ORF) of 585 nucleotides that has the coding capacity for 195 amino acids. To search for a polypeptide product derived from BM2ORF, a genetically engineered beta-galactosidase-BM2ORF fusion protein was expressed in Escherichia coli and a polyclonal rabbit antiserum was raised to the purified fusion protein. This antiserum was used to identify a polypeptide, designated BM2 protein (Mr approximately equal to 12,000), that is synthesized in influenza B virus-infected cells. To understand the mechanism by which the BM2 protein is generated from influenza B virus RNA segment 7, a mutational analysis of the cloned DNA was performed and the altered DNAs were expressed in eukaryotic cells. The expression patterns of the M1 and BM2 proteins from the altered DNAs indicate that the BM2 protein initiation codon overlaps with the termination codon of the M1 protein in an overlapping translational stop-start pentanucleotide, TAATG, and that the expression of the BM2 protein requires 5'-adjacent termination of M1 synthesis. Our data suggest that a termination-reinitiation scheme is used in translation of a bicistronic mRNA derived from influenza B virus RNA segment 7, and this strategy has some analogy to prokaryotic coupled stop-start translation of tandem cistrons.  相似文献   

9.
We have shown recently that a stable hairpin preceded by a short upstream open reading frame (uORF) promotes nonlinear ribosome migration or ribosome shunt on a synthetic mRNA leader (M. Hemmings-Mieszczak and T. Hohn, RNA 5:1149-1157, 1999). We have now used the model mRNA leader to study further the mechanism of shunting in vivo and in vitro. We show that a full cycle of translation of the uORF, including initiation, elongation, and termination, is a precondition for the ribosome shunt across the stem structure to initiate translation downstream. Specifically, AUG recognition and the proper release of the nascent peptide are necessary and sufficient for shunting. Furthermore, the stop codon context must not impede downstream reinitiation. Translation of the main ORF was inhibited by replacement of the uORF by coding sequences repressing reinitiation but stimulated by the presence of the virus-specific translational transactivator of reinitiation (cauliflower mosaic virus pVI). Our results indicate reinitiation as the mechanism of translation initiation on the synthetic shunt-competent mRNA leader and suggest that uORF-dependent shunting is more prevalent than previously anticipated. Within the above constraints, uORF-dependent shunting is quite tolerant of uORF and stem sequences and operates in systems as diverse as plants and fungi.  相似文献   

10.
Positioning of the mRNA codon towards the 18S ribosomal RNA in the A site of human 80S ribosomes has been studied applying short mRNA analogs containing either the stop codon UAA or the sense codon UCA with a perfluoroaryl azide group at the uridine residue. Bound to the ribosomal A site, a modified codon crosslinks exclusively to the 40S subunits under mild UV irradiation. This result is inconsistent with the hypothesis [Ivanov et al. (2001) RNA 7, 1683-1692] which requires direct contact between the large rRNA and the stop codon of the mRNA as recognition step at translation termination. Both sense and stop codons crosslink to the same A1823/A1824 invariant dinucleotide in helix 44 of 18S rRNA. The data point to the resemblance between the ternary complexes formed at elongation (sense codon.aminoacyl-tRNA.AA dinucleotide of 18S rRNA) and termination (stop codon.eRF1.AA dinucleotide of 18S rRNA) steps of protein synthesis and support the view that eRF1 may be considered as a functional mimic of aminoacyl-tRNA.  相似文献   

11.
The S1 mRNA of avian reovirus is functionally tricistronic, encoding three unrelated proteins, p10, p17 and σC, from three sequential, partially overlapping open reading frames (ORFs). The mechanism of translation initiation at the 3′-proximal σC ORF is currently unknown. Transient RNA transfections using Renilla luciferase reporter constructs revealed only a modest reduction in reporter expression upon optimization of either the p10 or p17 start sites. Insertion of multiple upstream AUG (uAUG) codons in a preferred start codon sequence context resulted in a substantial retention of downstream translation initiation on the S1 mRNA, but not on a heterologous mRNA. The S1 mRNA therefore facilitates leaky scanning to promote ribosome access to the σC start codon. Evidence also indicates that σC translation is mediated by a second scanning-independent mechanism capable of bypassing upstream ORFs. This alternate mechanism is cap-dependent and requires a sequence-dependent translation enhancer element that is complementary to 18S rRNA. Downstream translation initiation of the tricistronic S1 mRNA is therefore made possible by two alternate mechanisms, facilitated leaky scanning and an atypical form of ribosome shunting. This dual mechanism of downstream translation initiation ensures sufficient expression of the σC cell attachment protein that is essential for infectious progeny virus production.  相似文献   

12.
The genome-length, dicistronic mRNA of the double-stranded RNA fungal virus Helminthosporium victoriae virus 190S (genus Victorivirus, family Totiviridae) contains two long open reading frames (ORFs) that overlap in the tetranucleotide AUGA. Translation of the downstream ORF, which encodes the RNA-dependent RNA polymerase (RdRp), has been proposed to depend on ribosomal reinitiation following termination of the upstream ORF, which encodes the capsid protein. In the current study, we examined the RNA sequence determinants for RdRp translation in this virus and demonstrated that a coupled termination-reinitiation (stop-restart) strategy is indeed used. Signals for termination-reinitiation are found within a 32-nucleotide stretch of RNA immediately upstream of the AUGA motif, including a predicted pseudoknot structure. The close proximity in which this predicted structure is followed by the upstream ORF's stop codon appears to be especially important for promoting translation of the downstream ORF. The normal strong preferences for an AUG start codon and the canonical sequence context to favor translation initiation appear somewhat relaxed for the downstream ORF. Similar sequence motifs and predicted RNA structures in other victoriviruses suggest that they all share a related stop-restart strategy for RdRp translation. Members of the genus Victorivirus thus provide new and unique opportunities for exploring the molecular mechanisms of translational coupling, which remain only partly understood in this and other systems.  相似文献   

13.
Caliciviruses represent a family of positive strand RNA viruses responsible for a variety of syndromes in man and animals. VP10, a minor structural protein of the calicivirus rabbit hemorrhagic disease virus, is encoded in the small 3'-terminal open reading frame (ORF) 2 and is translated with an efficiency of approximately 20% of the preceding ORF1. The presence of the ORF1 termination codon is crucial for VP10 expression. Translation of VP10 starts at an AUG codon located at positions -5 to -3 of the ORF1 termination codon. However, VP10 was also expressed in the absence of an AUG initiation codon. The majority of ORF1 could be deleted or replaced by different sequences without significant influence on VP10 expression as long as translation terminated at the given position. The RNA sequence of the 3'-terminal 84 nucleotides of ORF1 but not the encoded peptide was found to be crucial for VP10 expression. In contrast, nearly the entire ORF2 could be replaced by a foreign sequence without abrogation of its translation. Accordingly, VP10 is expressed in a translation termination/reinitiation process that is particular because it is independent of an AUG translational start codon and requires the presence of a sequence element upstream of the initiation site.  相似文献   

14.
Translational control of the GCN4 gene involves two short open reading frames in the mRNA leader (uORF1 and uORF4) that differ greatly in the ability to allow reinitiation at GCN4 following their own translation. The low efficiency of reinitiation characteristic of uORF4 can be reconstituted in a hybrid element in which the last codon of uORF1 and 10 nucleotides 3' to its stop codon (the termination region) are substituted with the corresponding nucleotides from uORF4. To define the features of these 13 nucleotides that determine their effects on reinitiation, we separately randomized the sequence of the third codon and termination region of the uORF1-uORF4 hybrid and selected mutant alleles with the high-level reinitiation that is characteristic of uORF1. The results indicate that many different A+U-rich triplets present at the third codon of uORF1 can overcome the inhibitory effect of the termination region derived from uORF4 on the efficiency of reinitiation at GCN4. Efficient reinitiation is not associated with codons specifying a particular amino acid or isoacceptor tRNA. Similarly, we found that a diverse collection of A+U-rich sequences present in the termination region of uORF1 could restore efficient reinitiation at GCN4 in the presence of the third codon derived from uORF4. To explain these results, we propose that reinitiation can be impaired by stable base pairing between nucleotides flanking the uORF1 stop codon and either the tRNA which pairs with the third codon, the rRNA, or sequences located elsewhere in GCN4 mRNA. We suggest that these interactions delay the resumption of scanning following peptide chain termination at the uORF and thereby lead to ribosome dissociation from the mRNA.  相似文献   

15.
Translation of yeast GCN4 mRNA occurs by a reinitiation mechanism that is modulated by amino acid levels in the cell. Ribosomes which translate the first of four upstream open reading frames (uORFs) in the mRNA leader resume scanning and can reinitiate downstream. Under non-starvation conditions reinitiation occurs at one of the remaining three uORFs and GCN4 is repressed. Under starvation conditions, in contrast, ribosomes bypass the uORFs and reinitiate at GCN4 instead. The high frequency of reinitiation following uORF1 translation depends on an adequate distance to the next start codon and particular sequences surrounding the uORF1 stop codon. We present evidence that sequences 5' to uORF1 also strongly enhance reinitiation. First, reinitiation was severely inhibited when uORF1 was transplanted into the position of uORF4, even though the native sequence environment of the uORF1 stop codon was maintained, and this effect could not be accounted for by the decreased uORF1-GCN4 spacing. Second, insertions and deletions in the leader preceding uORF1 greatly reduced reinitiation at GCN4. Sequences 5' to uORF1 may influence the probability of ribosome release following peptide termination at uORF1. Alternatively, they may facilitate rebinding of an initiation factor required for reinitiation prior to resumption of the scanning process.  相似文献   

16.
RNA phage GA coat and lysis protein expression are translationally coupled through an overlapping termination and initiation codon UAAUG. Essential for this coupling are the proximity of the termination codon of the upstream coat gene to the initiation codon of the lysis gene (either a <3 nucleotide separation or physical closeness through a possible hairpin structure) but not the Shine-Dalgarno sequence. This suggests that the ribosomes completing the coat gene translation are exclusively responsible for translation of the lysis gene. Inactivation of ribosome recycling factor (RRF), which normally releases ribosomes at the termination codon, did not influence the expression of the reporter gene fused to the lysis gene. This suggests the possibility that RRF may not release ribosomes from the junction UAAUG. However, RRF is essential for correct ribosomal recognition of the AUG codon as the initiation site for the lysis gene.  相似文献   

17.
The fate of ribosomes between termination and initiation during protein synthesis is very basic, yet poorly understood. Here we found that translational reinitiation of the alkaline phosphatase gene occurs in Escherichia coli from an internal methionine codon when the authentic translation is prematurely terminated at a nonsense codon that is within seven codons upstream of the reinitiation codon (which we refer to as "reinitiation window"). Changing the reading frame downstream of the stop codon did not abolish the reinitiation, while inactivating the upstream initiation codon abolished the reinitiation. Moreover, depletion of the ribosome recycling factor (RRF), which disassembles posttermination ribosomes in conjunction with elongation factor G, did not influence the observed reinitiation. These findings suggest that posttermination ribosomes can undergo a transient idling state ready to reinitiate protein synthesis even in the absence of the Shine-Dalgarno (SD) sequence within the reinitiation window by evading disengagement from the mRNA.  相似文献   

18.
The human hepatitis B virus (HBV) has a compact genome encoding four major overlapping coding regions: the core, polymerase, surface and X. The polymerase initiation codon is preceded by the partially overlapping core and four or more upstream initiation codons. There is evidence that several mechanisms are used to enable the synthesis of the polymerase protein, including leaky scanning and ribosome reinitiation. We have examined the first AUG in the pregenomic RNA, it precedes that of the core. It initiates an uncharacterized short upstream open reading frame (uORF), highly conserved in all HBV subtypes, we designated the C0 ORF. This arrangement suggested that expression of the core and polymerase may be affected by this uORF. Initiation at the C0 ORF was confirmed in reporter constructs in transfected cells. The C0 ORF had an inhibitory role in downstream expression from the core initiation site in HepG2 cells and in vitro, but also stimulated reinitiation at the polymerase start when in an optimal context. Our results indicate that the C0 ORF is a determinant in balancing the synthesis of the core and polymerase proteins.  相似文献   

19.
Models of the atomic structure of the eukaryotic translation termination complex containing mRNA, P-site tRNAPhe, human class 1 release factor eRF1, and 80S ribosome, were constructed by computational modeling. The modeling was based on the assumed structural-functional similarity between the tRNA and eFR1 molecules in the ribosomal A site. The known atomic structure of the 70S ribosome complexed with mRNA as well as the P-and A-site tRNAsPhe was used as a structural template for the modeling. The eRF1 molecule bound in the A site undergoes substantial conformational changes so that the mutual configuration of the N and M domains matches the overall tRNA shape. Two models of eRF1 binding to mRNA at the A site in the presence of P-site tRNAPhe were generated. A characteristic of these models is complementary interactions between the mRNA stop codon and the grooves at different sides of the surface of the eRF1 fragment, containing helix α2, NIKS loop, and helix α3 of the N domain. In model 1, the nucleotides of the mRNA stop codon at the A site are approximately equidistant (~15 Å) from the N (motifs NIKS and YxCxxxF) and C domains. In model 2, the stop codon is close to the N-domain motifs NIKS and YxCxxxF. Both models fit genetic and biochemical experimental data. The choice of a particular model requires additional studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号