首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NOXO1 (Nox Organizer 1) is a homolog of the NAPDH oxidase protein p47 phox . NADPH oxidases transfer electrons from NADPH to molecular oxygen, generating the superoxide anion. NOXO1 contains an N-terminal PX (phox homology) domain and is one of several PX domain-containing proteins found in the cytosolic subunits of the NADPH oxidase complex. These PX domains bind to membrane lipids and target the protein to membranes, recruiting other cytosolic components to the membrane bound components and aiding formation of a active enzyme complex. This recruitment represents a level of regulation of these oxidases. Here we report the backbone assignments of NOXO1β PX.  相似文献   

2.
The Nef protein of the human immunodeficiency virus type 1 (HIV‐1) plays a crucial role in AIDS pathogenesis by modifying host cell signaling pathways. We investigated the effects of Nef on the NADPH oxidase complex, a key enzyme involved in the generation of reactive oxygen species during the respiratory burst in human monocyte/macrophages. We have recently shown that the inducible expression of HIV‐1 Nef in human macrophages cell line modulates in bi‐phasic mode the superoxide anion release by NADPH oxidase, inducing a fast increase of the superoxide production, followed by a delayed strong inhibition mediated by Nef‐induced soluble factor(s). Our study is focused on the molecular mechanisms involved in Nef‐mediated activation of NADPH oxidase and superoxide anion release. Using U937 cells stably transfected with different Nef alleles, we found that both Nef membrane localization and intact SH3‐binding domain are needed to induce superoxide release. The lack of effect during treatment with a specific MAPK pathway inhibitor, PD98059, demonstrated that Nef‐induced superoxide release is independent of Erk1/2 phosphorylation. Furthermore, Nef induced the phosphorylation and then the translocation of the cytosolic subunit of NADPH oxidase complex p47phox to the plasma membrane. Adding the inhibitor PP2 prevented this process, evidencing the involvement of the Src family kinases on Nef‐mediated NADPH oxidase activation. In addition, LY294002, a specific inhibitor of phosphoinositide 3‐kinase (PI3K) inhibited both the Nef‐induced p47phox phosphorylation and the superoxide anion release. These data indicate that Nef regulates the NADPH oxidase activity through the activation of the Src kinases and PI3K. J. Cell. Biochem. 106: 812–822, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Neutrophil-like HL-60 cells reacted to N -formyl- l -Methionyl- l -Leucyl- l -P henylalanine (f MLP) with a rise in the intracellular calcium concentration ([Ca2]i), NADPH oxidase activation, and increased superoxide anion (O2-) production. [Ca2+]i mobilization and superoxide production were largely dependent on extracellular calcium (Ca2+]e) and a capacitative calcium entry. The monomeric G-protein, Rac-1, regulates NADPH oxidase activity. We tested the effect of removal of Ca2+]e on Rac-1 plasma membrane sequestration and activation of NADPH oxidase using immunodetection and a double labelling fluorescent method. Results showed that Rac-1 activation is mediated via a pertussis toxin (PTX)-sensitive heteromeric G-protein pathway, and that Rac-1 membrane sequestration was preceded by [Ca2+]i mobilization following entry of Ca2+ e. Therefore, we propose that O2- production is dependent on activation of PTX-sensitive G-proteins and sequestration of Rac-1 in the plasma membrane, following entry of Ca2+ e.  相似文献   

4.
The chemotherapeutic drug cisplatin has some side effects including nephrotoxicity that has been associated with reactive oxygen species production, particularly superoxide anion. The major source of superoxide anion is nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase. However, the specific segment of the nephron in which superoxide anion is produced has not been identified. Rats were sacrificed 72 h after cisplatin injection (7.5 mg/kg), and kidneys were obtained to isolate glomeruli and proximal and distal tubules. Cisplatin induced superoxide anion production in glomeruli and proximal tubules but not in distal tubules. This enhanced superoxide anion production was prevented by diphenylene iodonium, an inhibitor of NADPH oxidase. Consistently, this effect was associated with the increased expression of gp91phox and p47phox, subunits of NADPH oxidase. The enhanced superoxide anion production in glomeruli and proximal tubules, associated with the increased expression of gp91phox and p47phox, is involved in the oxidative stress in cisplatin‐induced nephrotoxicity.  相似文献   

5.
Titanium dioxide (TiO2) anatase nanoparticles (NPs) are metal oxide NPs commercialized for several uses of everyday life. However their toxicity has been poorly investigated. Cellular internalization of NPs has been shown to activate macrophages and neutrophils that contribute to superoxide anion production by the NADPH oxidase complex. Transmission electron micrososcopy images showed that the membrane fractions were close to the NPs while fluorescence indicated an interaction between NPs and cytosolic proteins. Using a cell-free system, we have investigated the influence of TiO2 NPs on the behavior of the NADPH oxidase. In the absence of the classical activator molecules of the enzyme (arachidonic acid) but in the presence of TiO2 NPs, no production of superoxide ions could be detected indicating that TiO2 NPs were unable to activate by themselves the complex. However once the NADPH oxidase was activated (i.e., by arachidonic acid), the rate of superoxide anion production went up to 140% of its value without NPs, this effect being dependent on their concentration. In the presence of TiO2 nanoparticles, the NADPH oxidase produces more superoxide ions, hence induces higher oxidative stress. This hyper-activation and the subsequent increase in ROS production by TiO2 NPs could participate to the oxidative stress development.  相似文献   

6.
The effect of the brassinosteroids (BS) 24-epibrassinolide and 24-epicastasterone on the thermoresistance of wheat coleoptiles (Triticum aestivum L.) and their generation of the superoxide anion radical and antioxidant enzymes activity were investigated. The treatment of coleoptiles with 10 nM solutions of BS caused a transient increase in O 2 ⊙? generation and a subsequent increase in the activity of superoxide dismutase and catalase and an improvement in heat resistance. Pretreatment of coleoptiles with the NADPH oxidase inhibitor imidazole leveled the increase in production of the superoxide anion radical and prevented an increase in the activity of antioxidant enzymes and the development of cell thermostability. The investigated effects of BS were also depressed by the pretreatment of coleoptile segments with extracellular calcium chelator EGTA and inhibitor of ADP-ribosyl cyclase nicotinamide. A conclusion was made about the participation of calcium ions and reactive oxygen species generated by the action of NADPH oxidase in the implementation of the stress-protective effect of the BS in the cells of wheat coleoptiles.  相似文献   

7.
To unravel mechanisms of elicitor action of furostanol glycosides (FGs), the formation of superoxide anion after the addition of FGs to a suspension culture of yam (Dioscorea deltoidea Wall. ex Griseb) cells was studied. The substantial increase in superoxide level, evaluated by nitroblue tetrazolium (NBT) reduction to formazan, was found at the exponential phase of cell growth. The involvement of NADPH oxidase in the superoxide generation was revealed by means of inhibitory analysis. Diphenyliodonium chloride (DPI), the inhibitor of NADPH oxidase, compromised the action of FGs. Meanwhile, the elimination of apoplastic peroxidase did not affect the accumulation of formazan, which suggests the involvement of NADPH oxidase but not peroxidase in the superoxide generation. In addition to NBT-test, the superoxide formation was judged by changes in activity of superoxide dismutase (SOD). Exogenous FGs activated the enzyme due to the increased production of superoxide anion. In this case, DPI decreased SOD activity that conforms to the NADPH oxidase involvement in the superoxide generation. The analysis of antioxidant activity of FGs by inhibition of radicals of 2,2-diphenyl-1-picrylhydrazyl showed that FGs are weak reductants in comparison with ascorbic acid. The results of the work allow for the suggestion that, supposing a weak reducing capacity of FGs, the special feature of their exogenous action on cultured yam cells is the increase in the level of superoxide anion radical mainly produced by NADPH oxidase.  相似文献   

8.
Elevation of blood homocysteine (Hcy) levels (hyperhomocysteinemia) is a risk factor for cardiovascular disorders. We previously reported that oxidative stress contributed to Hcy-induced inflammatory response in vascular cells. In this study, we investigated whether NADPH oxidase was involved in Hcy-induced superoxide anion accumulation in the aorta, which leads to endothelial dysfunction during hyperhomocysteinemia. Hyperhomocysteinemia was induced in rats fed a high-methionine diet. NADPH oxidase activity and the levels of superoxide and peroxynitrite were markedly increased in aortas isolated from hyperhomocysteinemic rats. Expression of the NADPH oxidase subunit p22 phox increased significantly in these aortas. Administration of an NADPH oxidase inhibitor (apocynin) not only attenuated aortic superoxide and peroxynitrite to control levels but also restored endothelium-dependent relaxation in the aortas of hyperhomocysteinemic rats. Transfection of human endothelial cells or vascular smooth muscle cells with p22 phox siRNA to inhibit NADPH oxidase activation effectively abolished Hcy-induced superoxide anion production, thus indicating the direct involvement of NADPH oxidase in elevated superoxide generation in vascular cells. Taken together, these results suggest that Hcy-stimulated superoxide anion production in the vascular wall is mediated through the activation of NADPH oxidase, which leads to endothelial dysfunction during hyperhomocysteinemia.  相似文献   

9.
Hyperhomocysteinaemia is an independent risk factor for cardiovascular diseases due to atherosclerosis. The development of atherosclerosis involves reactive oxygen species-induced oxidative stress in vascular cells. Our previous study [Wang and O (2001) Biochem. J. 357, 233-240] demonstrated that Hcy (homocysteine) treatment caused a significant elevation of intracellular superoxide anion, leading to increased expression of chemokine receptor in monocytes. NADPH oxidase is primarily responsible for superoxide anion production in monocytes. In the present study, we investigated the molecular mechanism of Hcy-induced superoxide anion production in monocytes. Hcy treatment (20-100 microM) caused an activation of NADPH oxidase and an increase in the superoxide anion level in monocytes (THP-1, a human monocytic cell line). Transfection of cells with p47phox siRNA (small interfering RNA) abolished Hcy-induced superoxide anion production, indicating the involvement of NADPH oxidase. Hcy treatment resulted in phosphorylation and subsequently membrane translocation of p47phox and p67phox subunits leading to NADPH oxidase activation. Pretreatment of cells with PKC (protein kinase C) inhibitors Ro-32-0432 (bisindolylmaleimide XI hydrochloride) (selective for PKCalpha, PKCbeta and PKCgamma) abolished Hcy-induced phosphorylation of p47phox and p67phox subunits in monocytes. Transfection of cells with antisense PKCbeta oligonucleotide, but not antisense PKCalpha oligonucleotide, completely blocked Hcy-induced phosphorylation of p47phox and p67phox subunits as well as superoxide anion production. Pretreatment of cells with LY333531, a PKCbeta inhibitor, abolished Hcy-induced superoxide anion production. Taken together, these results indicate that Hcy-stimulated superoxide anion production in monocytes is regulated through PKC-dependent phosphorylation of p47phox and p67phox subunits of NADPH oxidase. Increased superoxide anion production via NADPH oxidase may play an important role in Hcy-induced inflammatory response during atherogenesis.  相似文献   

10.
Macrophage phagocytosis activates NADPH oxidase, an electron transport system in the plasma membrane. This study examined the feasibility of utilizing electrons transferred through the plasma membrane via NADPH oxidase to run a biofuel cell. THP-1 human monocytic cells were chemically stimulated to differentiate into macrophages. Further they were activated to induce a phagocytic response. During differentiation, cells became adherent to a plain gold electrode which was used as anode in a two-compartment fuel cell system. The current production in the fuel cell always corresponded to the NADPH oxidase activity, which was evaluated by the amount of superoxide anion produced upon stimulation in combination with the expression levels of the different NADPH oxidase subunits in cells. Moreover, our results of different inhibitory tests let us conclude that (i) the current observed in the fuel cell originates from NADPH oxidase in activated macrophages and (ii) there are multiple electron transport pathways from the cells to the electrode. One pathway involves superoxide anions produced upon stimulation, additional not yet identified electron transport occurs independently of superoxide anions.This type of novel biofuel cell driven by living human cells may eventually develop into a battery replacement for small medical devices.  相似文献   

11.
Cumulative doses of doxorubicin, a potent anticancer drug, lead to serious myocardial dysfunction. Numerous mechanisms including apoptosis have been proposed to account for its cardiotoxicity. Cardiac apoptosis induced by doxorubicin has been related to excessive reactive oxygen species production by the mitochondrial NADH dehydrogenase. Here, we explored whether doxorubicin treatment activates other superoxide anion generating systems such as the NADPH oxidases, membrane-embedded flavin-containing enzymes, and whether the subsequent oxidative stress contributes to apoptosis. We showed that doxorubicin treatment of rat cardiomyoblasts H9c2 triggers increases in caspase-3 like activity and hypoploid cells, both common features of apoptosis. Doxorubicin exposure also leads to a rapid superoxide production through NADPH oxidase activation. Inhibition of these enzymes using diphenyliodonium and apocynin reduces doxorubicin-induced reactive oxygen species production, caspase-3 like activity and sub-G1 cell population. In conclusion, NADPH oxidases participate to doxorubicin-induced cardiac apoptosis.  相似文献   

12.
Superoxide dismutase was found to partially inhibit both chemiluminescence and nitroblue tetrazolium (NBT) reduction from intact human polymorphonuclear leukocytes. This capacity to reduce NBT was lost when the polymorphonuclear leukocytes were sonicated, but could be regained if exogenous NADPH (or NADH) was added to the system. Superoxide dismutase was found to inhibit this NADPH- and NADH-dependent NBT reduction. A mechanism is proposed that relates superoxide anion generation to the univalent reduction of O2 by the activated NADPH (and NADH) oxidase. The relationship of superoxide anion production to NBT reduction, singlet molecular oxygen generation, and chemiluminescence is discussed.  相似文献   

13.
A. W. Segal 《Protoplasma》1995,184(1-4):86-103
Summary Phagocytic cells of the immune system contain an oxidase that is important for the killing and digestion of engulfed microbes. This is an electron transport chain that transfers electrons from NADPH in the cytosol to oxygen to form superoxide and hydrogen peroxide in the phagocytic vacuole. Absence or abnormality of this oxidase results in the syndrome of CGD, characterised by a profound predisposition to infection. The electron transport chain consists of a flavocytochrome b located in the plasma membrane and membrane of the specific granules. It is composed of a and b-subunits, with apparent molecular masses of 23 kDa and 76–92 kDa, respectively. The b-subunit is a member of the FNR family of reductases with FAD and NADPH binding sites. Based upon the crystal structure of FNR we have constructed a model of the more hydrophilic C terminal half of this b-subunit, which acts as a guide to the organisation of the molecule, and provides a template on which to map mutations in CGD. The location of the heme is uncertain. Electron transport is dependent upon an activation complex of cytosolic proteins including p40 phox , p47 phox , and p67 phox , and the small GTP binding protein, p21 rac . This oxidase system is important for the killing and digestion of bacteria and fungi. This might be accomplished in a number of ways. The oxidase produces superoxide and hydrogen which might be toxic themselves. The hydrogen peroxide can act as substrate for myeloperoxidase which can oxidise chloride and iodide to chlorine and iodine and their hypohalous acids. The proteins contained within the cytoplasmic granules are also very important in the killing process. These are neutral proteinases that require a neutral or slightly alkaline pH for optimal activity. The oxidase transports electrons, unaccompanied by protons, across the wall of the phagocytic vacuole, resulting in an elevation of the vacuolar pH, thereby optimising conditions for killing and digestion of engulfed organisms by these neutral proteinases.  相似文献   

14.
Mitochondrial and NADPH oxidase systems and oxidative stress were investigated in 12 week high-fat high-sucrose (HFHS) diet-fed rats. A protective effect of wine polyphenol (PP) extract was also examined. In liver, maximal activities of CII and CII+III mitochondrial complexes were decreased but NADPH oxidase expression (p22phox and p47phox) and NADPH oxidase-dependent superoxide anion production were not modified, whereas oxidative stress (lipid and protein oxidation products and antioxidant systems) was increased with HFHS diet. In muscle, anion superoxide production was slightly increased while mitochondrial complex activities and lipid and protein oxidation products were not modified with HFHS diet. In heart, NADPH oxidase expression and superoxide anion production were increased, and maximal activity of mitochondrial respiratory chain complexes or oxidative stress parameters were not modified. Wine polyphenol extract had an inhibiting effect on liver oxidative stress and on heart NADPH oxidase expression and superoxide anion production, and on induction of hepatic steatosis with HFHS diet. Induction of mitochondrial dysfunction could be a primary event in the development of oxidative stress in liver, while in skeletal muscle and in heart the NADPH oxidase system seems to be mainly involved in oxidative stress. Wine polyphenol extract was shown to partially prevent oxidative stress in liver and heart tissues and to nearly completely prevent steatosis development in liver.  相似文献   

15.
The chloroplast is the chlorophyll‐containing organelle that produces energy through photosynthesis. Within the chloroplast is an intricate network of thylakoid membranes containing photosynthetic membrane proteins that mediate electron transport and generate chemical energy. Historically, electron microscopy (EM) has been a powerful tool for visualizing the macromolecular structure and organization of thylakoid membranes. However, an understanding of thylakoid membrane dynamics remains elusive because EM requires fixation and sectioning. To improve our knowledge of thylakoid membrane dynamics we need to consider at least two issues: (i) the live‐cell imaging conditions needed to visualize active processes in vivo; and (ii) the spatial resolution required to differentiate the characteristics of thylakoid membranes. Here, we utilize three‐dimensional structured illumination microscopy (3D‐SIM) to explore the optimal imaging conditions for investigating the dynamics of thylakoid membranes in living plant and algal cells. We show that 3D‐SIM is capable of examining broad characteristics of thylakoid structures in chloroplasts of the vascular plant Arabidopsis thaliana and distinguishing the structural differences between wild‐type and mutant strains. Using 3D‐SIM, we also visualize thylakoid organization in whole cells of the green alga Chlamydomonas reinhardtii. These data reveal that high light intensity changes thylakoid membrane structure in C. reinhardtii. Moreover, we observed the green alga Chromochloris zofingiensis and the moss Physcomitrella patens to show the applicability of 3D‐SIM. This study demonstrates that 3D‐SIM is a promising approach for studying the dynamics of thylakoid membranes in photoautotrophic organisms during photoacclimation processes.  相似文献   

16.
Abstract

We present an up-to-date insight into the function of NADPH oxidase in human neutrophils, the signalling pathways involved in activation of this enzyme and the process of association of its components with the cytoskeleton. We also discuss the functional implications of morphological studies revealing localization of the sites of NADPH oxidase activity. An original model of the process of superoxide (O2) production in human neutrophils is shown. Organization of NADPH oxidase is associated with several components. Upon stimulation, tri-phox cytosolic components of NADPH oxidase (p40-phox, p47-phox and p67-phox) bind to actin filaments. This process involves other actin-binding proteins, such as cofilin and coronin. Activated protein kinase C, translocated from the plasma membrane, phosphorylates cytosolic components at a scaffold of cytoskeleton. Subsequently, p40-phox, responsible for maintaining the resting state of NADPH oxidase, is separated from other two cytosolic phox proteins following an attachment of the active form of small GTP-binding protein Rac to p67-phox. Cytosolic duo-phox proteins (p47-phox and p67-phox) conjugate with membrane components (gp91-phox, p22-phox and Rap1a) of NADPH oxidase residing within membranes of intracellular compartments. This chain of events triggers production of O2. Then, oxidant-producing intracellular compartments associate with the plasma membrane. Eventually, intracellularly produced O2 is released to the extracellular environment through the orifice formed by fusion of oxidant-producing compartments with the plasma membrane. Intracellular movement of the oxidant-producing compartments may be regulated by myosin light chain kinase. The review emphasizes that functional assembly of NADPH oxidase and, therefore, generation of O2 is accomplished essentially within the intracellular compartments. Upon neutrophil stimulation, intracellularly generated O2 is transported to the plasma membrane to be released and to ensure host defense against infection.  相似文献   

17.
Brassinosteroids (BRs) play essential roles in modulating plant growth, development and stress responses. Here, involvement of BRs in plant systemic resistance to virus was studied. Treatment of local leaves in Nicotiana benthamiana with BRs induced virus resistance in upper untreated leaves, accompanied by accumulations of H2O2 and NO. Scavenging of H2O2 or NO in upper leaves blocked BR‐induced systemic virus resistance. BR‐induced systemic H2O2 accumulation was blocked by local pharmacological inhibition of NADPH oxidase or silencing of respiratory burst oxidase homolog gene NbRBOHB, but not by systemic NADPH oxidase inhibition or NbRBOHA silencing. Silencing of the nitrite‐dependent nitrate reductase gene NbNR or systemic pharmacological inhibition of NR compromised BR‐triggered systemic NO accumulation, while local inhibition of NR, silencing of NbNOA1 and inhibition of NOS had little effect. Moreover, we provide evidence that BR‐activated H2O2 is required for NO synthesis. Pharmacological scavenging or genetic inhibiting of H2O2 generation blocked BR‐induced systemic NO production, but BR‐induced H2O2 production was not sensitive to NO scavengers or silencing of NbNR. Systemically applied sodium nitroprusside rescued BR‐induced systemic virus defense in NbRBOHB‐silenced plants, but H2O2 did not reverse the effect of NbNR silencing on BR‐induced systemic virus resistance. Finally, we demonstrate that the receptor kinase BRI1(BR insensitive 1) is an upstream component in BR‐mediated systemic defense signaling, as silencing of NbBRI1 compromised the BR‐induced H2O2 and NO production associated with systemic virus resistance. Together, our pharmacological and genetic data suggest the existence of a signaling pathway leading to BR‐mediated systemic virus resistance that involves local Respiratory Burst Oxidase Homolog B (RBOHB)‐dependent H2O2 production and subsequent systemic NR‐dependent NO generation.  相似文献   

18.
Reconstituted discoidal high-density lipoprotein (rHDL) has potent vascular protective actions. Native HDL suppresses cellular generation of reactive oxygen species, whereas this antioxidant effect of rHDL is less clear. This study examined the effects of rHDL on NADPH oxidase, a major source of cellular superoxide generation, in both leukocytes and human umbilical vein endothelial cells. Superoxide was measured with lucigenin-enhanced chemiluminescence. Expression of NADPH oxidase sub-units was determined by real-time PCR. Pre-treatment of HL-60 cells with rHDL (10 and 25 µM) for 1 h significantly reduced phorbol 12-myristate 13-acetate-stimulated superoxide production. Treatment with rHDL for up to 24 h did not change the mRNA expression of NADPH oxidase sub-units. In HL-60 cells, depletion of cholesterol from the plasma membrane by methyl-β-cyclodextrin mimicked the effect of rHDL, whereas cholesterol repletion blunted the effects of rHDL. Treatment with rHDL induced disruption of the lipid raft structures and blunted PMA-induced redistribution of p47phox into lipid rafts. In contrast, treatment of endothelial cells with rHDL for up to 18 h had no effect on either basal or tumour necrosis factor-α-stimulated NADPH oxidase activity, but markedly suppressed the cytokine-induced expression of proinflammatory adhesion molecules. The results suggest that rHDL inhibits NADPH oxidase activation in leukocytes, probably by interrupting the assembly of NADPH oxidase sub-units at the lipid rafts. This effect may contribute to the vascular protective actions of rHDL against inflammation-mediated oxidative damage.  相似文献   

19.
Polycyclic aromatic hydrocarbons such as benzo(a)pyrene (BaP) are toxic environmental contaminants known to regulate gene expression through activation of the aryl hydrocarbon receptor (AhR). In the present study, we demonstrated that acute treatment by BaP markedly increased expression of the NADPH oxidase subunit gene neutrophil cytosolic factor 1 (NCF1)/p47phox in primary human macrophages; NCF1 was similarly up-regulated in alveolar macrophages from BaP-instilled rats. NCF1 induction in BaP-treated human macrophages was prevented by targeting AhR, through its chemical inhibition or small interference RNA-mediated down-modulation of its expression. BaP moreover induced activity of the NCF1 promoter sequence, containing a consensus AhR-related xenobiotic-responsive element (XRE), and electrophoretic mobility shift assays and chromatin immunoprecipitation experiments indicated that BaP-triggered binding of AhR to this XRE. Finally, we showed that BaP exposure resulted in p47phox protein translocation to the plasma membrane and in potentiation of phorbol myristate acetate (PMA)-induced superoxide anion production in macrophages. This BaP priming effect toward NADPH oxidase activity was inhibited by the NADPH oxidase specific inhibitor apocynin and the chemical AhR inhibitor α-naphtoflavone. These results indicated that BaP induced NCF1/p47phox expression and subsequently enhanced superoxide anion production in PMA-treated human macrophages, in an AhR-dependent manner; such an NCF1/NADPH oxidase regulation by polycyclic aromatic hydrocarbons may participate in deleterious effects toward human health triggered by these environmental contaminants, including atherosclerosis and smoking-related diseases.  相似文献   

20.
Five-day-old etiolated seedlings of maize (Zea mays L.) were used to study the kinetics of hydrogen peroxide formation upon lowering growth temperature from 25 to 6°C. The total content of hydrogen peroxide in root and shoot tissues increased by 30–40% after 2-h cooling compared to the control level but returned to the initial level or decreased even lower after 24-h cooling. In order to prove the involvement of plasma membrane NADPH oxidase in changes of hydrogen peroxide content upon cooling, isolated plasma membranes were obtained from untreated plants and from seedlings chilled at 6°C for 2 and 24 h. The NADPH-dependent generation of superoxide anion radical in isolated plasma membranes was quantified by measuring the rate of formazan production from the tetrazolium salt XTT. The activity of plasma membrane NADPH oxidase in shoots was 50 ± 9 nmol O2/(mg protein min), which was 1.5 times higher than the activity in roots. The enzyme activity in plasma membranes was inhibited by low concentrations of diphenyleneiodonium. The effective concentration EC50 was 5.10 μM for shoots and 9.05 μM for roots. The activity of plasma membrane NADPH oxidase increased after 2-h cooling of seedlings but reversed to the control level after 24-h cooling. This transient activation of NADPH oxidase upon cooling was similar to the pattern of hydrogen peroxide formation in shoots and roots. Analysis of NADPH oxidase activity of plasma membrane proteins after their separation in denaturing conditions followed by subsequent renaturation revealed four diphenyleneiodonium-sensitive bands with mol wt of 130, 88, 51, and 48 kD. Western blot analysis of the reaction with antibodies against the catalytic domain of phagocyte NADPH oxidase revealed the proteins with mol wt of only 88 and 48 kD. The properties of molecular organization of plasma membrane NADPH oxidase are discussed in terms of its role in cell signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号