首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Angiogenesis, the formation of new blood vessels, is a key physiological event in organ development and tissue responses to hypoxia but is also involved in pathophysiologies such as tumour growth and retinopathies. Understanding the molecular mechanisms involved is important to design strategies for therapeutic intervention. One important regulator of angiogenesis is transforming growth factor‐β1 (TGF‐β1). In addition, reactive oxygen species (ROS) and the ROS‐forming NADPH oxidase type 4 (Nox4) have been implicated as additional regulators such as during hypoxia. Here, we show that both processes are indeed mechanistically linked. TGF‐β1‐stimulated Nox4 expression and ROS formation in endothelial cells. In cells from Nox4‐deficient mice, TGF‐β1‐induced cell proliferation, migration and tube formation were abolished. In vivo, TGF‐β1 stimulated growth of blood vessels into sponges implanted subcutaneously, and this angiogenesis was markedly reduced in Nox4 knockout mice. Thus, endothelial cells are regulated by a TGF‐β1 signalling pathway involving Nox4‐derived ROS to promote angiogenesis. In order to abrogate pathological angiogenesis triggered by a multitude of factors, such as TGF‐β1 and hypoxia, Nox4 may thus be an ideal therapeutic target.  相似文献   

4.
Growth differentiation factor 8 (GDF8)/myostatin is a latent TGF‐β family member that potently inhibits skeletal muscle growth. Here, we compared the conformation and dynamics of precursor, latent, and Tolloid‐cleaved GDF8 pro‐complexes to understand structural mechanisms underlying latency and activation of GDF8. Negative stain electron microscopy (EM) of precursor and latent pro‐complexes reveals a V‐shaped conformation that is unaltered by furin cleavage and sharply contrasts with the ring‐like, cross‐armed conformation of latent TGF‐β1. Surprisingly, Tolloid‐cleaved GDF8 does not immediately dissociate, but in EM exhibits structural heterogeneity consistent with partial dissociation. Hydrogen–deuterium exchange was not affected by furin cleavage. In contrast, Tolloid cleavage, in the absence of prodomain–growth factor dissociation, increased exchange in regions that correspond in pro‐TGF‐β1 to the α1‐helix, latency lasso, and β1‐strand in the prodomain and to the β6′‐ and β7′‐strands in the growth factor. Thus, these regions are important in maintaining GDF8 latency. Our results show that Tolloid cleavage activates latent GDF8 by destabilizing specific prodomain–growth factor interfaces and primes the growth factor for release from the prodomain.  相似文献   

5.
Hepatocyte growth factor (HGF) ameliorates experimental liver fibrosis through many mechanisms, including degradation of accumulated collagen and decreased expression of fibrotic genes. Investigating an upstream mechanism in which HGF could decrease many fibrotic effectors, we asked whether HGF regulates activation of the fibrotic cytokine transforming growth factor‐beta 1 (TGF‐β1). Specifically, we tested whether HGF decreases the levels of active TGF‐β1, and whether such decrease depends on the predominantly hepatocyte‐secreted protease plasmin, and whether it depends on the TGF‐β1 activator thrombospondin‐1 (TSP‐1). With hepatocyte monocultures, we found HGF‐induced hepatocyte proliferation did increase total levels of plasmin, while decreasing gene expression of fibrotic markers (PAI‐1, TGF‐β1, and TIMP‐2). With in vitro models of fibrotic liver (HSC‐T6 hepatic stellate cells, or co‐cultures of HSC‐T6 and hepatocytes), we found high levels of fibrosis‐associated proteins such as TSP‐1, active TGF‐β1, and Collagen I. HGF treatment on these fibrotic cultures stimulated plasmin levels; increased TSP‐1 protein cleavage; and decreased the levels of active TGF‐β1 and Collagen I. When plasmin was blocked by the inhibitor aprotinin, HGF could no longer decrease TGF‐β1 activation and Collagen I. Meanwhile, the TSP‐1‐specific peptide inhibitor, LSKL, reduced TGF‐β1 to the same level as in the HGF‐treated cultures; combining LSKL and HGF treatments caused no further decrease, suggesting that HGF affects the TSP‐1 dependent pathway of TGF‐β1 activation. Therefore, HGF can decrease TGF‐β1 activation and TGF‐β1‐dependent fibrotic markers, by stimulating hepatocytes to produce plasmin, and by antagonizing TSP‐1‐dependent activation of TGF‐β1. J. Cell. Physiol. 228: 393–401, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Genetic modification of marrow concentrates may provide convenient approaches to enhance the chondrogenic differentiation processes and improve the repair capacities in sites of cartilage defects following administration in the lesions. Here, we provided clinically adapted recombinant adeno‐associated virus (rAAV) vectors to human bone marrow aspirates to promote the expression of the potent transforming growth factor beta (TGF‐β) as a means to regulate the biological and chondrogenic activities in the samples in vitro. Successful TGF‐β gene transfer and expression via rAAV was reached relative to control (lacZ) treatment (from 511.1 to 16.1 pg rhTGF‐β/mg total proteins after 21 days), allowing to durably enhance the levels of cell proliferation, matrix synthesis, and chondrogenic differentiation. Strikingly, in the conditions applied here, application of the candidate TGF‐β vector was also capable of reducing the hypertrophic and osteogenic differentiation processes in the aspirates, showing the potential benefits of using this particular vector to directly modify marrow concentrates to generate single‐step, effective approaches that aim at improving articular cartilage repair in vivo.  相似文献   

7.
8.
9.
10.
Signaling by the transforming growth factor‐β (TGF‐β) is an essential pathway regulating a variety of cellular events. TGF‐β is produced as a latent protein complex and is required to be activated before activating the receptor. The mechanical force at the cell surface is believed to be a mechanism for latent TGF‐β activation. Using β‐actin null mouse embryonic fibroblasts as a model, in which actin cytoskeleton and cell‐surface biophysical features are dramatically altered, we reveal increased TGF‐β1 activation and the upregulation of TGF‐β target genes. In β‐actin null cells, we show evidence that the enhanced TGF‐β signaling relies on the active utilization of latent TGF‐β1 in the cell culture medium. TGF‐β signaling activation contributes to the elevated reactive oxygen species production, which is likely mediated by the upregulation of Nox4. The previously observed myofibroblast phenotype of β‐actin null cells is inhibited by TGF‐β signaling inhibition, while the expression of actin cytoskeleton genes and angiogenic phenotype are not affected. Together, our study shows a scenario that the alteration of the actin cytoskeleton and the consequent changes in cellular biophysical features lead to changes in cell signaling process such as TGF‐β activation, which in turn contributes to the enhanced myofibroblast phenotype.  相似文献   

11.
Pulmonary fibrosis is characterized by an extensive activation of fibrogenic cells and deposition of extracellular matrix (ECM). Transforming growth factor (TGF)‐β1 plays a pivotal role in the pathogenesis of pulmonary fibrosis, probably through the epithelial‐ to‐mesenchymal transition (EMT) and ECM production. The present study investigates potential mechanism by which TGF‐β1 induces EMT and ECM production in the fibrogenesis of human lung epithelial cells during pulmonary fibrosis. The expression of EMT phenotype and other proteins relevant to fibrogenesis were measured and the cell bio‐behaviours were assessed using Cell‐IQ Alive Image Monitoring System. We found that TGF‐β1‐induced EMT was accompanied with increased collagen I deposition, which may be involved in the regulation of connective tissue growth factor (CTGF) and phosphoinositide 3‐kinase (PI3K) signalling pathway. Treatment with PI3K inhibitors significantly attenuated the TGF‐β1‐ induced EMT, CTGF expression and collagen I synthesis in lung epithelial cells. The interference of CTGF expression impaired the basal and TGF‐β1‐stimulated collagen I deposition, but did not affect the process of EMT. Our data indicate that the signal pathway of TGF‐β1/PI3K/CTGF plays an important role in the fibrogenesis of human lung epithelial cells, which may be a novel therapeutic approach to prevent and treat pulmonary fibrosis.  相似文献   

12.
13.
14.
Transforming growth factor (TGF)‐β1 is a known factor in angiotensin II (Ang II)‐mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor‐1 (Hif‐1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif‐1α contributed to the Ang II‐mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif‐1α and TGF‐β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague–Dawley rats with MI daily for 1 week; saline and hydralazine (another anti‐hypertensive agent like valsartan) was used as control. The fibrosis‐related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up‐regulation of Ang II, TGF‐β/Smad and Hif‐1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up‐regulation of TGF‐β/Smad and Hif‐1α was through the Ang II‐mediated pathway. By administering TGF‐β or dimethyloxalylglycine, we determined that both TGF‐β/Smad and Hif‐1α contributed to Ang II‐mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF‐β/Smad, Hif‐1α and fibrosis‐related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II‐induced cardiac fibrosis as well as into the cardiac protection of valsartan.  相似文献   

15.
16.
Epithelial‐to‐mesenchymal transition (EMT) plays a significant role in tubulointerstitial fibrosis, which is a hallmark of diabetic nephropathy. Thus, identifying the mechanisms of EMT activation could be meaningful. In this study, loss of miR‐30c accompanied with increased EMT was observed in renal tubules of db/db mice and cultured HK2 cells exposed to high glucose. To further explore the roles of miR‐30c in EMT and tubulointerstitial fibrosis, recombinant adeno‐associated viral vector was applied to manipulate the expression of miR‐30c. In vivo study showed that overexpression of miR‐30c suppressed EMT, attenuated renal tubulointerstitial fibrosis and reduced proteinuria, serum creatinine, and BUN levels. In addition, Snail1 was identified as a direct target of miR‐30c by Ago2 co‐immunoprecipitation, luciferase reporter, and Western blot assays. Downregulating Snail1 by siRNA reduced high glucose‐induced EMT in HK2 cells, and miR‐30c mimicked the effects. Moreover, miR‐30c inhibited Snail1‐TGF‐β1 axis in tubular epithelial cells undergoing EMT and thereby impeded the release of TGF‐β1; oppositely, knockdown of miR‐30c enhanced the secretion of TGF‐β1 from epitheliums and significantly promoted proliferation of fibroblasts and fibrogenesis of myofibroblasts, aggravated tubulointerstitial fibrosis, and dysfunction of diabetic nephropathy. These results suggest a protective role of miR‐30c against diabetic nephropathy by suppressing EMT via inhibiting Snail1‐TGF‐β1 pathway.  相似文献   

17.
Connective tissue growth factor (CTGF) is involved in inflammation, pathogenesis and progression of liver fibrosis. Matrix metalloproteinase‐13 (MMP‐13) cleaves CTGF and releases several fragments, which are more potent than the parent molecule to induce fibrosis. The current study was aimed to elucidate the significance of MMP‐13 and CTGF and their downstream effects in liver injury and fibrosis. Hepatic fibrosis was induced using intraperitoneal injections of N‐nitrosodimethylamine (NDMA) in doses of 10 μg/g body weight on three consecutive days of each week over a period of 4 weeks in both wild‐type (WT) and MMP‐13 knockout mice. Administration of NDMA resulted in marked elevation of AST, ALT, TGF‐β1 and hyaluronic acid in the serum and activation of stellate cells, massive necrosis, deposition of collagen fibres and increase in total collagen in the liver of WT mice with a significant decrease in MMP‐13 knockout mice. Protein and mRNA levels of CTGF, TGF‐β1, α‐SMA and type I collagen and the levels of MMP‐2, MMP‐9 and cleaved products of CTGF were markedly increased in NDMA‐treated WT mice compared to the MMP‐13 knockout mice. Blocking of MMP‐13 with CL‐82198 in hepatic stellate cell cultures resulted in marked decrease of the staining intensity of CTGF as well as protein levels of full‐length CTGF and its C‐terminal fragments and active TGF‐β1. The data demonstrate that MMP‐13 and CTGF play a crucial role in modulation of fibrogenic mediators and promote hepatic fibrogenesis. Furthermore, the study suggests that blocking of MMP‐13 and CTGF has potential therapeutic implications to arrest liver fibrosis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号