首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Air temperatures of greater than 35 °C are frequently encountered in groundnut‐growing regions, especially in the semi‐arid tropics. Such extreme temperatures are likely to increase in frequency under future predicted climates. High air temperatures result in failure of peg and pod set due to lower pollen viability. The response of pollen germination and pollen tube growth to temperature was quantified in order to identify differences in pollen tolerance to temperature among 21 groundnut genotypes. Plants were grown from sowing to harvest in a poly‐tunnel under an optimum temperature of 28/22 °C (day/night). Pollen was collected at anther dehiscence and was exposed to temperatures from 10° to 47·5 °C at 2·5 °C intervals. The results showed that a modified bilinear model most accurately described the response to temperature of percentage pollen germination and maximum pollen tube length. Genotypes were found to range from most tolerant to most susceptible based on both pollen characters and membrane thermostability. Mean cardinal temperatures (Tmin, Topt and Tmax) averaged over 21 genotypes were 14·1, 30·1 and 43·0 °C for percentage pollen germination and 14·6, 34·4 and 43·4 °C for maximum pollen tube length. The genotypes 55‐437, ICG 1236, TMV 2 and ICGS 11 can be grouped as tolerant to high temperature and genotypes Kadiri 3, ICGV 92116 and ICGV 92118 as susceptible genotypes, based on the cardinal temperatures. The principal component analysis identified maximum percentage pollen germination and pollen tube length of the genotypes, and Tmax for the two processes as the most important pollen parameters in describing a genotypic tolerance to high temperature. The Tmin and Topt for pollen germination and tube growth, rate of pollen tube growth were less predictive in discriminating genotypes for high temperature tolerance. Genotypic differences in heat tolerance‐based on pollen response were poorly related (R2 = 0·334, P = 0·006) to relative injury as determined by membrane thermostability.  相似文献   

2.
A germination study was carried out on seeds of Clinopodium sandalioticum (Bacch. & Brullo) Bacch. & Brullo ex Peruzzi & Conti (Lamiaceae), a wild aromatic plant endemic to Sardinia. Seeds were incubated at a range of constant (5–25°C) and an alternating temperatures regime (25/10°C), with 12 hours of irradiance per day. The results achieved at 10°C were also compared with those obtained after a period of cold stratification at 5°C for three months. Final seed germination ranged from ca. 28% (5°C) to ca. 72% (25/10°C). A base temperature for germination (Tb) of ca. 5°C and a thermal constant for 50% germination (S) of 89.3°Cd were identified and an optimal temperature for germination (To) was estimated to be comprised between 20 and 25°C. Cold stratification negatively affected seed viability and germination at 10°C. Although a typical “Mediterranean germination syndrome”, could not be detected for C. sandalioticum seeds, these results were coherent with those previously reported for other Mediterranean Lamiaceae species.  相似文献   

3.
Abstract The germination of Sorghum bicolor seeds of 9 genotypes was tested at temperatures between 8°C and 48°C on a thermal gradient plate. Samples were tested from three regions of the panicle expected to differ in temperature during grain filling. Seeds of a tenth genotype, SPV 354, produced in controlled-environment glasshouses at different panicle temperatures, were tested similarly. In addition, the emergence of SPV 354 was measured from planting depths of 2 and 5 cm at mean soil temperatures of 15, 20 and 25°C. Four methods of calculating mean germination rate for the nine genotypes were compared. Germination characters like base, optimum and maximum temperature (Tb, To, Tm), thermal time (θ)and the germination rate at To(Rmax showed only small differences between methods. There was a range of genotypic variation in all characters: Tb 8.5–11.9°C; To, 33.2–37.5°C; Tm, 46.8–49.2°C; θ, 23.4–38.0°Cd; Rmax, 0.69–1.14-d-1. In contrast, mean germinability (G) was between 90% and 100% over the temperature range 13–40°C. Panicle temperature had no effect on any germination character in SPV 354. However, deeper burial increased θ for emergence and decreased G, irrespective of soil temperature except at 5 cm. Increasing panicle temperature, by reducing seed size, reduced G and increased θ by about 10% only at 15°C and 5 cm depth.  相似文献   

4.
The high establishment costs of Miscanthus by clonal propagation are a barrier to widespread deployment. Direct sowing is the cheapest method, but limited field trials have given generally poor results. Miscanthus, a perennial grass with C4 photosynthesis has tropical origins, but is found growing both at high latitudes (>40°) and altitudes (>1000 m) in Asia. In this paper, we investigate if significant variation in the thermal requirements for germination exist in 10 Miscanthus sinensis half‐sib families and compare these with Panicum virgatum (Switchgrass – Trailblazer), Phalaris arundinaceae (Reed canary grass – P10) and Lolium perenne (perennial ryegrass cv AberDart) and maize (Zea mays cv Aviso). The comparisons were made on a thermal gradient bar with a controlled temperature oscillating ± 5 °C on a 12 h cycle and germination was monitored daily for 35 days at mean temperatures ranging from 5.3 to 26.5 °C. Base temperatures were calculated below which germination of at least 50% of viable seeds ceased. Base temperatures were lowest for L. perenne and Zea mays at 3.4 and 4.5 °C respectively; for different Miscanthus half‐sib families base temperatures ranged between 9.7 and 11.6 °C and these were higher than maize and switchgrass which share C4 photosynthesis with Miscanthus. Parameters derived from germination and temperature were used to predict germination patterns in Europe based on historical climate data. We predict that seed establishment of Miscanthus in spring time is unlikely to be viable in Northern Europe under present climatic conditions without crop management practices aimed at raising soil temperature, and that useful variation in thermal requirement for germination in Miscanthus is available which should facilitate seed germination in other regions.  相似文献   

5.
  • Anogeissus leiocarpa (DC.) Guill. & Perr. (Combretaceae) has important economic and cultural value in West Africa as source of wood, dye and medicine. Although this tree is in high demand by local communities, its planting remains limited due to its very low propagation via seed.
  • In this study, X‐rays were used to select filled fruits in order to characterise their morphology and seed germination responses to treatment with sulphuric acid and different incubation temperatures.
  • Morphological observations highlighted a straight orthotropous seed structure. The increase in mass detected for both intact and scarified fruits through imbibition tests, as well as morphological observations of fruits soaked in methylene blue solution, confirmed that they are water‐permeable, although acid‐scarified fruits reached significantly higher mass increment values than intact ones. Acid scarification (10 min soaking in 98% H2SO4) positively affected seed germination rate but not final germination proportions. When intact fruits where incubated at a range of temperatures, no seeds germinated at 10 °C, while maximum seed germination (ca. 80%) was reached at 20 °C. T50 values ranged from a minimum of ca. 12 days at 25 °C to a maximum of ca. 34 days at 15 and 35 °C. A theoretical base temperature for germination (Tb) of ca. 10 °C and a thermal requirement for 50% germination (S) of ca. 195 °Cd were also identified for intact fruits.
  • The results of this study revealed the seed germination characteristics driven by fruit and seed morphology of this species, which will help in its wider propagation in plantations.
  相似文献   

6.
The effects of eight germination temperatures from 10°C to 35°C on germination and dehydrogenase activities of two soybean (Glycine max [L.] Merr.) cultivars were investigated after 48 h of seedling growth. Axis fresh weights of cv. Chippewa increased as germination temperature increased from 10°C to 35°C. In contrast, axis fresh weights for the cv. Wells increased more slowly with increasing temperature and reached a maximum at c. 25°C. In general, in vitro activities of glutamate dehydrogenase (GDH), NADP-isocitrate dehydrogenase (NADP-ICDH), and malate dehydrogenase (MDH) from the axes of cv. Chippewa correlated well with increases in axis fresh weights. GDH and MDH activities from axes of the cv. Wells also reflected increases in axis fresh weights although the correlation was not as evident as for the cv. Chippewa. NADP-ICDH activity from ‘Wells’ axes was highest at 35°C even though germination was poor at this temperature. GDH and MDH activities from cotyledons of both cultivars were not correlated with axis weight increases. No GDH activity was detected in ‘Wells’ cotyledons from seeds germinated at 35°C.  相似文献   

7.
Recruitment from seeds is among the most vulnerable stage for plants as global temperatures change. While germination is the means by which the vast majority of the world's flora regenerate naturally, a framework for accurately predicting which species are at greatest risk of germination failure during environmental perturbation is lacking. Taking a physiological approach, we assess how one family, the Cactaceae, may respond to global temperature change based on the thermal buffering capacity of the germination phenotype. We selected 55 cactus species from the Americas, all geo‐referenced seed collections, reflecting the broad environmental envelope of the family across 70° of latitude and 3700 m of altitude. We then generated empirical data of the thermal germination response from which we estimated the minimum (Tb), optimum (To) and ceiling (Tc) temperature for germination and the thermal time (θ50) for each species based on the linearity of germination rate with temperature. Species with the highest Tb and lowest Tc germinated fastest, and the interspecific sensitivity of the germination rate to temperature, as assessed through θ50, varied tenfold. A left‐skewed asymmetry in the germination rate with temperature was relatively common but the unimodal pattern typical of crop species failed for nearly half of the species due to insensitivity to temperature change at To. For 32 fully characterized species, seed thermal parameters correlated strongly with the mean temperature of the wettest quarter of the seed collection sites. By projecting the mean temperature of the wettest quarter under two climate change scenarios, we predict under the least conservative scenario (+3.7°C) that 25% of cactus species will have reduced germination performance, whilst the remainder will have an efficiency gain, by the end of the 21st century.  相似文献   

8.
In most tropical regions where wheat is grown under irrigation, high temperatures at sowing adversely affect crop establishment and subsequent seedling survival. The objective of this study was to compare wheat (Triticum aestivum) genotypes for their ability to germinate and grow at high temperatures during the seedling stage. Twenty-five seeds each of 14 spring wheat cultivars were placed on moist filter paper at different temperatures (5°C to 40°C) in a one-way thermogradient plate to determine the cardinal temperatures for germination. Rate of germination at each temperature for each genotype was computed as the inverse of time taken for 50% of the seeds to germinate. Rate of germination for each genotype at different temperatures was modelled with temperature to determine the base (tb), and optimum (topt) temperatures. Response of germination to temperature for each genotype was calculated as the slope of a linear regression of the rate of germination on temperature below topt. Genotypes differed in their optimum temperatures and Mexipak (= Kalyansona) had the lowest. Range in base temperature among the genotypes was between 0°C and 2°C differences but were not statistically significant though they might be biologically significant. Genotypes differed in their response to temperature with Gomam having the lowest rate, implying that it was slow to respond to increasing temperatures. Debeira and Cham 6 showed a similar response. Three lines which had performed well in spring wheat evaluation trials for moderate rainfall areas under heat stress had the highest response rate. It is concluded that combining higher optimum temperatures with faster response rates would result in better-adapted germplasm for regions where high temperatures persist at sowing.  相似文献   

9.
Seed dormancy and germination characteristics are important factors determining plant reproductive success. In this study, we aimed to explore the characteristics of seed dormancy and germination of two endemic Labiatae species (Lamiophlomis rotata and Marmoritis complanatum) in the Himalaya–Hengduan Mountains. Germination was first tested in the light using freshly matured seeds at 25/15 and 15/5°C, and then again after dry after-ripening. Dried seeds were incubated in the light at a range of constant temperatures (1–35°C). The effects of dark and GA3 on germination were tested at several different temperatures. Base temperature (Tb) and thermal times for 50% final germination (θ50) were calculated. Seeds were also buried at the collection site to test seed persistence in the soil. Increased final germination after dry after-ripening indicated that the seeds of the two species exhibited non-deep physiological dormancy; however, they exhibited different germination characteristics and soil seed bank types. In L. rotata, GA3 only promoted germination at 5°C, producing no significant effect at other temperatures. Dark conditions decreased germination significantly at all temperatures. Tb and θ50 values were 0.6 and 82.7°C d. The soil seed bank of this species was classified as persistent. In M. complanatum, GA3 significantly promoted germination at all temperatures except 15°C. Dark conditions depressed germination significantly at warmer temperatures (20 and 25°C) but had no effect at lower temperatures. Tb and θ50 values were 0.1 and 92.3°C d. The soil seed bank was classified as transient. Our results suggest that the seed dormancy and germination of the two co-existing species share some commonalities but there are also species-specific adaptations to the harsh alpine environment.  相似文献   

10.
In order to investigate the relative impacts of increases in day and night temperature on tree carbon relations, we measured night‐time respiration and daytime photosynthesis of leaves in canopies of 4‐m‐tall cottonwood (Populus deltoides Bartr. ex Marsh) trees experiencing three daytime temperatures (25, 28 or 31 °C) and either (i) a constant nocturnal temperature of 20 °C or (ii) increasing nocturnal temperatures (15, 20 or 25 °C). In the first (day warming only) experiment, rates of night‐time leaf dark respiration (Rdark) remained constant and leaves displayed a modest increase (11%) in light‐saturated photosynthetic capacity (Amax) during the day (1000–1300 h) over the 6 °C range. In the second (dual night and day warming) experiment, Rdark increased by 77% when nocturnal temperatures were increased from 15 °C (0·36 µmol m?2 s?1) to 25 °C (0·64 µmol m?2 s?1). Amax responded positively to the additional nocturnal warming, and increased by 38 and 64% in the 20/28 and 25/31 °C treatments, respectively, compared with the 15/25 °C treatment. These increases in photosynthetic capacity were associated with strong increases in the maximum carboxylation rate of rubisco (Vcmax) and ribulose‐1,5‐bisphosphate (RuBP) regeneration capacity mediated by maximum electron transport rate (Jmax). Leaf soluble sugar and starch concentration, measured at sunrise, declined significantly as nocturnal temperature increased. The nocturnal temperature manipulation resulted in a significant inverse relationship between Amax and pre‐dawn leaf carbohydrate status. Independent measurements of the temperature response of photosynthesis indicated that the optimum temperature (Topt) acclimated fully to the 6 °C range of temperature imposed in the daytime warming. Our findings are consistent with the hypothesis that elevated night‐time temperature increases photosynthetic capacity during the following light period through a respiratory‐driven reduction in leaf carbohydrate concentration. These responses indicate that predicted increases in night‐time minimum temperatures may have a significant influence on net plant carbon uptake.  相似文献   

11.
The objectives were to (a) quantify the effects of high daytime temperature (HDT) from gametogenesis to full bloom on photosynthesis and pod set in soybean (Glycine max L. Merril) genotypes and (b) assess the relationships among photosynthesis, cardinal temperatures for pollen germination, in vitro pollen germination percentage, canopy reflectance, and pod‐set percentage. Three field experiments were conducted, and Experiment I had HDT between gametogenesis and full bloom (36.5°C to 38.6°C) compared with Experiments II and III (29.5°C to 31.6°C; optimum temperature). HDT decreased photosynthesis (22%) and pod‐set percent (11%) compared with Experiment III. Cultivars had higher photosynthesis and pod‐set percent than plant introduction (PI) lines. The cultivars (i.e., IA3023 and KS4694) and PI lines (i.e., PI393540 and PI588026A) were HDT tolerant and susceptible, respectively. The decreased pod‐set percentage in susceptible genotypes (PI lines) was associated with pollen characteristics. Significant positive (r2 ≥ 0.67) association between photosynthesis, cardinal temperatures for pollen germination (Topt and Tmax) with pod‐set percentage was observed. However, a negative (r2 ≥ ?0.43) association between photosynthesis and pod set with canopy reflectance at visible spectrum was observed. In vitro pollen germination and canopy reflectance at visible spectrum can be used as a high‐throughput phenotypic tool for breeding HDT‐tolerant genotypes.  相似文献   

12.
Seed germination is greatly influenced by both temperature (T) and water potential (ψ) and these factors largely determine germination rate (GR) in the field. Quantitative information about T and ψ effects on seed germination in lemon balm (Melisa officinalis L.) is scarce. The main objective of this study was to quantify seed germination responses of lemon balm to T and ψ, and to determine cardinal temperatures in a laboratory experiment. A segmented model was used to describe the effects of ψ (i.e., T) on GR and other germination parameters. The segmented model estimates were 7.2 °C for base (T b), 28.9 °C for optimum (T o), 40.1 °C for ceiling temperature (T c) and 1.64 physiological days (f o) (equivalent to a GRmax of 0.610 d?1 and a thermal time of 35.6 °C days) to reach 50 % maximum germination in the control (0 MPa) treatment (R 2 = 0.99, RMSE = 0.005 day?1). The inherent maximum rate of germination (days) was calculated by the [GRmax = 1/f o] model. ψ affected cardinal temperatures. From 0 to ?0.76 MPa, when ψ increased, T b was a constant 7.2 °C to ?0.38 MPa and increased linearly to 20.1 °C as ψ decreased. T o and f o increased linearly from 28.9 to 30 °C, and from 1.64 to 5.4 day?1, respectively as ψ decreased. However, there was no signification difference in T o as ψ decreased nor did T c decrease from 40.1 to 35 °C as ψ decreased. T b, T c and GRmax were the sole parameters affected by ψ and could be used to characterize differences between ψ treatments with respect to GR at various Ts. Therefore, the segmented model and its parameters can be used in lemon balm germination simulation models.  相似文献   

13.
  • Morphological and functional seed traits have important roles in characterising the species regeneration niche and help to understand the reproductive biology of rare and threatened plants, which can thus support appropriate plant conservation measures.
  • Seed morphometric and dispersal kinetics of the critically endangered Dioscorea strydomiana were measured and compared with those of four other Dioscorea species, and seed germination response under constant temperatures (5–35 °C) was compared with that of the congeneric and widespread D. sylvatica.
  • Seed mass of D. strydomiana (ca. 14 mg) was twice that of D. sylvatica, but similar to or smaller than the other species examined. Seeds of D. strydomiana have the lowest speed of descent and lowest variability in most of the morphological traits considered, suggesting lower phenotypic plasticity but higher variance in the wing‐loading value. Seeds of D. strydomiana reached maximum germination at 15 °C (ca. 47%), which decreased slightly to ca. 37% at 25 °C and was completely inhibited at 35 °C. D. sylvatica seeds started to germinate at 10 °C (ca. 3%), reached 75–80% germination at 15–20 °C and maximum (ca. 90%) at 25–30 °C. Base temperatures for germination (Tb) were 9.3 and 5.7 °C, for D. strydomiana and D. sylvatica, respectively. Due to the higher germination percentages of D. sylvatica, ceiling and optimum temperatures could also be modelled for this species, suggesting higher sensitivity to high temperature for seeds of D. strydomiana.
  • The detected poor seed lot quality of D. strydomiana suggests difficulties in reproduction from seed, highlighting the need for further investigation and conservation actions for this threatened yam species.
  相似文献   

14.
Understanding how climate change will affect regeneration from seeds is important for developing conservation strategies. We evaluated seed germination requirements for sympatric species of Xyris from montane rupestrian grasslands (campo rupestre) in Brazil to determine their thermal niche and thermal requirements for seed germination. We also assessed whether projected temperature increases would affect seed germination of the species. Seed germination was evaluated at a wide range of constant temperatures (10–40°C) under light (12-hr photoperiod) and dark conditions. Base temperatures (Tb) and thermal times for 50% germination (θ50) were calculated for three species. The effects of projected mean temperature increase on seed germination percentage and timing were evaluated. All species revealed an absolute light requirement for germination. Thermal germination niche breadth was greatest for X. asperula (15 to 35°C) and narrowest for X. seubertii (20 and 25°C). Base temperatures for X. asperula, X. pilosa and X. trachyphylla were 9.0, 12.8 and 11.1°C, respectively. In the scenario with the highest temperature increase (A2), the greatest reductions in seed germination are observed for X. pilosa and X. seubertii. The lowest projected temperature increase (2°C) was sufficient to decrease by 1 day the germination time of X. asperula and X. pilosa. Species of Xyris do not present a pattern for thermal germination niche and thermal requirements values, indicating that the effects of climate warming on the regeneration of these seeds will probably vary among species.  相似文献   

15.
Conyza bonariensis is one of the most problematic weed species throughout the world. It is considered highly noxious due to its interference with human activities, and especially the competition it poses with economically important crops. This research investigated the temperature requirements for seed germination of four populations of C. bonariensis with distinct origin and the influence of daily alternating temperatures. For this, a set of germination tests were performed in growth chambers to explore the effect of constant and alternating temperatures. Seeds of the four populations (from Lleida, Badajoz and Seville, Spain and Bahía Blanca, Argentina) were maintained at constant temperatures ranging from 5 to 35°C. The final germination and cardinal temperatures (base, optimum and maximum) of each population were obtained. We also tested the influence of daily alternating temperatures on final germination. To do so, seeds were exposed to two temperature regimes: 5/15, 10/20, 15/25, 20/30 and 25/35°C night/day temperature (intervals increasing 5°C, with constant oscillation of 10°C) and to 18/22, 16/24, 14/26, 12/28 and 10/30°C night/day temperature (intervals with average of 20°C, but increasing the oscillation in 4°C between intervals). In general, all populations behaved similarly, with the highest germination percentages occurring in the optimum temperature range (between 21.7°C and 22.3°C) for both constant and alternating temperatures. In general, climatic origin affected germination response, where seeds obtained from the coldest origin exhibited the highest germination percentage at the lowest temperature assayed. In addition, we observed that the alternating temperatures can positively affect total germination, especially in oscillations that were further from the average optimum temperature (20°C), with high germination percentage for the oscillations of 15/25, 20/30, 18/22, 16/24, 14/26, 12/28 and 10/30°C in all populations. The cardinal temperatures obtained were significantly different across the populations. These results provide information that will facilitate a better understanding of the behaviour of Conyza and improve current field emergence models.  相似文献   

16.
  • Helichrysum microphyllum subsp. tyrrhenicum (Asteraceae) is an endemic taxon of Sardinia and Corsica, where it grows at different altitudes. The objective of this study was to investigate the seed traits and germination behaviour of four Sardinian populations of this taxon located at different altitudes.
  • Seed traits were evaluated, and germination tests were carried out by incubating seeds at a range of constant (5–30 °C) and alternating (25/10 °C) temperatures. The dry after‐ripening (DAR) pre‐treatment was also applied by storing seed in dry conditions for 3 months at 25 °C. Seed traits and germination behaviour data were statistically analysed to identify if there was a correlation with altitude.
  • Differences in seed size, area and mass among populations were recorded, however, no relationship was found with altitude. High germination percentages were obtained in all populations, both in untreated and DAR seeds, and were positively affected by alternating temperatures. The final germination percentage and time required to reach 50% final germination (T50) showed no relationship with altitude.
  • The differences in seed traits and germination detected among the studied populations of H. microphyllum subsp. tyrrhenicum were not correlated with altitude. This study provides new and important knowledge for this taxon. H. microphyllum subsp. tyrrhenicum is characterised by high germination percentages and low T50 values and does not seem to require any dormancy‐breaking treatment. This species represents a high‐potential native plant species that should be considered within environmental management plans.
  相似文献   

17.
Fire is considered an important factor in influencing the physiognomy, dynamics and composition of Neotropical savannas. Species of diverse physiognomies exhibit different responses to fire, such as population persistence and seed mortality, according to the fire frequency to which they are submitted. The aim of this study is to investigate the effects of heat shocks on seed germination of Anadenanthera macrocarpa (Benth.) Brenan, Dalbergia miscolobium Benth., Aristolochia galeata Mart. & Zucc., Kielmeyera coriacea (Spreng.) Mart. and Guazuma ulmifolia Lam., which are native species of the Brazilian savanna. The temperatures and exposure times to which the seeds were submitted were established according to data obtained in the field during a prescribed fire: 60 °C (10, 20 and 40 min), 80 °C (5, 10 and 20 min) and 100 °C (2, 5 and 10 min). Untreated seeds were used as controls. Seeds of A. galeata and K. coriacea showed high tolerance to most heat treatments, and seeds of A. macrocarpa showed a significant reduction in germination percentage after treatments of 80 °C and 100 °C. Treatments of 100 °C for 10 min reduced germination percentage for all species except G. ulmifolia, which has dormant seeds. For this species, germination was accelerated by heat treatments. The high temperatures applied did not interfere with the time to 50% germination (T50) of the tolerant seeds. Seeds of the savanna species K. coriacea and A. galeata were more tolerant to heat shocks than seeds of the forest species A. macrocarpa. Guazuma ulmifolia, the forest species with seeds that germinate after heat shock, also occurs in savanna physiognomies. Overall, the high temperatures applied did not affect the germination rate of the tolerant seeds.  相似文献   

18.
19.
We report the effects of storage time and pretreatment on seed germination of Fokienia hodginsii. Lower mean germination was observed in seeds stored for 2 years (6.41 ± 1.23 seeds/replicate) compared with those stored for 1 year (8.52 ± 1.06 seeds/replicate). Seeds collected from a southern location had statistically higher mean germination (9.67 ± 1.28 seeds/replicate) than those collected from a northern location (7.99 ± 1.36 seeds/replicate). Higher mean T50 was observed in seeds stored for 2 years (37.02 ± 4.43 days) compared with those stored for 1 year (30.69 ± 5.06 days). Mean germination of untreated fresh seeds was 9.97 ± 1.34 seeds/replicate and that of treated fresh seeds in 60°C water was 12.95 ± 1.24 seeds/replicate. Fresh seeds treated with 50°C and 70°C water had a significantly lower mean germination compared with untreated seeds and seeds treated in 60°C water. Mean T50 was lowest in seeds treated with 60°C water.  相似文献   

20.
Artemisia sphaerocephala is widely used for vegetation rehabilitation, but its germination is very low after air seeding of achenes. We explored effects of light, temperature and water stress on germination. Results show that both final percent germination and germination rate were increased by temperature increment, with the highest values occurring at 15: 25°C (night: day) in dark and 20: 30°C under light. Light inhibited germination, especially at lower alternating temperatures (5: 15°C and 10: 20°C). The alternating temperature window for germination was slightly narrower under light than in dark, and germination was slower under light than in dark across the temperature range. Achenes incubated in the dark and at constant temperatures had over 80% germination at 10 to 25°C, with an optimum at 20°C. Under dark and 25μmol m‐2 s‐1 light flux density at 10: 20°C, final percent germination was over 94%, but if the light flux density was increased to 100 and 400 μmol m‐2 s‐1, final percent germination was significantly lower (64% and 38% respectively). However, achenes could keep their germination capacity for a long time (over 50 days) and germinate well after going back to the dark. Germination was also lower under water stress and few achenes germinated at ‐1.4 MPa. This was more pronounced at high and low temperatures. Given these findings and the prevailing climatic characteristics, the most suitable time for air seeding of achenes may be mid‐May.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号