首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant‐based platforms are extensively used for the expression of recombinant proteins, including monoclonal antibodies. However, to harness the approach effectively and leverage it to its full potential, a better understanding of intracellular processes that affect protein properties is required. In this work, we examined vacuolar (vac) targeting and deposition of the monoclonal antibody (Ab) 14D9 in Nicotiana benthamiana leaves. Two distinct vacuolar targeting signals (KISIA and NIFRGF) were C‐terminal fused to the heavy chain of 14D9 (vac‐Abs) and compared with secreted and ER‐retained variants (sec‐Ab, ER‐Ab, respectively). Accumulation of ER‐ and vac‐Abs was 10‐ to 15‐fold higher than sec‐Ab. N‐glycan profiling revealed the predominant presence of plant typical complex fucosylated and xylosylated GnGnXF structures on sec‐Ab while vac‐Abs carried mainly oligomannosidic (Man 7‐9) next to GnGnXF forms. Paucimannosidic glycans (commonly assigned as typical vacuolar) were not detected. Confocal microscopy analysis using RFP fusions showed that sec‐Ab‐RFP localized in the apoplast while vac‐Abs‐RFP were exclusively detected in the central vacuole. The data suggest that vac‐Abs reached the vacuole by two different pathways: direct transport from the ER bypassing the Golgi (Ab molecules containing Man structures) and trafficking through the Golgi (for Ab molecules containing complex N‐glycans). Importantly, vac‐Abs were correctly assembled and functionally active. Collectively, we show that the central vacuole is an appropriate compartment for the efficient production of Abs with appropriate post‐translational modifications, but also point to a reconsideration of current concepts in plant glycan processing.  相似文献   

2.
Isomaltulose (IM) is a natural isomer of sucrose. It is widely approved as a food with properties including slower digestion, lower glycaemic index and low cariogenicity, which can benefit consumers. Availability is currently limited by the cost of fermentative conversion from sucrose. Transgenic sugarcane plants with developmentally‐controlled expression of a silencing‐resistant gene encoding a vacuole‐targeted IM synthase were tested under field conditions typical of commercial sugarcane cultivation. High yields of IM were obtained, up to 483 mm or 81% of total sugars in whole‐cane juice from plants aged 13 months. Using promoters from sugarcane to drive expression preferentially in the sugarcane stem, IM levels were consistent between stalks and stools within a transgenic line and across consecutive vegetative field generations of tested high‐isomer lines. Germination and early growth of plants from setts were unaffected by IM accumulation, up to the tested level around 500 mm in flanking stem internodes. These are the highest yields ever achieved of value‐added materials through plant metabolic engineering. The sugarcane stem promoters are promising for strategies to achieve even higher IM levels and for other applications in sugarcane molecular improvement. Silencing‐resistant transgenes are critical to deliver the potential of these promoters in practical sugarcane improvement. At the IM levels now achieved in field‐grown sugarcane, direct production of IM in plants is feasible at a cost approaching that of sucrose, which should make the benefits of IM affordable on a much wider scale.  相似文献   

3.
Precise genome engineering via homologous recombination (HR)‐mediated gene targeting (GT) has become an essential tool in molecular breeding as well as in basic plant science. As HR‐mediated GT is an extremely rare event, positive–negative selection has been used extensively in flowering plants to isolate cells in which GT has occurred. In order to utilize GT as a methodology for precision mutagenesis, the positive selectable marker gene should be completely eliminated from the GT locus. Here, we introduce targeted point mutations conferring resistance to herbicide into the rice acetolactate synthase (ALS) gene via GT with subsequent marker excision by piggyBac transposition. Almost all regenerated plants expressing piggyBac transposase contained exclusively targeted point mutations without concomitant re‐integration of the transposon, resulting in these progeny showing a herbicide bispyribac sodium (BS)‐tolerant phenotype. This approach was also applied successfully to the editing of a microRNA targeting site in the rice cleistogamy 1 gene. Therefore, our approach provides a general strategy for the targeted modification of endogenous genes in plants.  相似文献   

4.
Plants have mechanisms to recognize and reject pollen from other species. Although widespread, these mechanisms are less well understood than the self‐incompatibility (SI) mechanisms plants use to reject pollen from close relatives. Previous studies have shown that some interspecific reproductive barriers (IRBs) are related to SI in the Solanaceae. For example, the pistil SI proteins S‐RNase and HT protein function in a pistil‐side IRB that causes rejection of pollen from self‐compatible (SC) red/orange‐fruited species in the tomato clade. However, S‐RNase‐independent IRBs also clearly contribute to rejecting pollen from these species. We investigated S‐RNase‐independent rejection of Solanum lycopersicum pollen by SC Solanum pennellii LA0716, SC. Solanum habrochaites LA0407, and SC Solanum arcanum LA2157, which lack functional S‐RNase expression. We found that all three accessions express HT proteins, which previously had been known to function only in conjunction with S‐RNase, and then used RNAi to test whether they also function in S‐RNase‐independent pollen rejection. Suppressing HT expression in SC S. pennellii LA0716 allows S. lycopersicum pollen tubes to penetrate farther into the pistil in HT suppressed plants, but not to reach the ovary. In contrast, suppressing HT expression in SC. Solanum habrochaites LA0407 and in SC S. arcanum LA2157 allows S. lycopersicum pollen tubes to penetrate to the ovary and produce hybrids that, otherwise, would be difficult to obtain. Thus, HT proteins are implicated in both S‐RNase‐dependent and S‐RNase‐independent pollen rejection. The results support the view that overall compatibility results from multiple pollen–pistil interactions with additive effects.  相似文献   

5.
CRISPR/Cas systems provide bacteria and archaea with molecular immunity against invading phages and foreign plasmids. The class 2 type VI CRISPR/Cas effector Cas13a is an RNA‐targeting CRISPR effector that provides protection against RNA phages. Here we report the repurposing of CRISPR/Cas13a to protect potato plants from a eukaryotic virus, Potato virus Y (PVY). Transgenic potato lines expressing Cas13a/sgRNA (small guide RNA) constructs showed suppressed PVY accumulation and disease symptoms. The levels of viral resistance correlated with the expression levels of the Cas13a/sgRNA construct in the plants. Our data further demonstrate that appropriately designed sgRNAs can specifically interfere with multiple PVY strains, while having no effect on unrelated viruses such as PVA or Potato virus S. Our findings provide a novel and highly efficient strategy for engineering crops with resistances to viral diseases.  相似文献   

6.
7.
The evolution of C4 photosynthesis proceeded stepwise with each small step increasing the fitness of the plant. An important pre‐condition for the introduction of a functional C4 cycle is the photosynthetic activation of the C3 bundle sheath by increasing its volume and organelle number. Therefore, to engineer C4 photosynthesis into existing C3 crops, information about genes that control the bundle sheath cell size and organelle content is needed. However, very little information is known about the genes that could be manipulated to create a more C4–like bundle sheath. To this end, an ethylmethanesulfonate (EMS)‐based forward genetic screen was established in the Brassicaceae Cspecies Arabidopsis thaliana. To ensure a high‐throughput primary screen, the bundle sheath cells of A. thaliana were labeled using a luciferase (LUC68) or by a chloroplast‐targeted green fluorescent protein (sGFP) reporter using a bundle sheath specific promoter. The signal strengths of the reporter genes were used as a proxy to search for mutants with altered bundle sheath anatomy. Here, we show that our genetic screen predominantly identified mutants that were primarily affected in the architecture of the vascular bundle, and led to an increase in bundle sheath volume. By using a mapping‐by‐sequencing approach the genomic segments that contained mutated candidate genes were identified.  相似文献   

8.
9.
The movement of chromosomes during meiosis involves location of their telomeres at the inner surface of the nuclear envelope. Sad1/UNC‐84 (SUN) domain proteins are inner nuclear envelope proteins that are part of complexes linking cytoskeletal elements with the nucleoskeleton, connecting telomeres to the force‐generating mechanism in the cytoplasm. These proteins play a conserved role in chromosome dynamics in eukaryotes. Homologues of SUN domain proteins have been identified in several plant species. In Arabidopsis thaliana, two proteins that interact with each other, named AtSUN1 and AtSUN2, have been identified. Immunolocalization using antibodies against AtSUN1 and AtSUN2 proteins revealed that they were associated with the nuclear envelope during meiotic prophase I. Analysis of the double mutant Atsun11 Atsun22 has revealed severe meiotic defects, namely a delay in the progression of meiosis, absence of full synapsis, the presence of unresolved interlock‐like structures, and a reduction in the mean cell chiasma frequency. We propose that in Arabidopsis thaliana, overlapping functions of SUN1 and SUN2 ensure normal meiotic recombination and synapsis.  相似文献   

10.
  • Drought is one of the most serious environmental factors limiting production of sugarcane worldwide. In order to assess the influence of gibberellins (GA3) on drought and plant growth, along with associated physio‐biochemical attributes, expression of eight drought‐responsive genes were quantified and analysed.
  • At grand growth stage (120 DAP) two sugarcane varieties (CoLk94184, CoPK05191) were exposed to drought by withholding irrigation. GA3 (35 ppm) was applied using battery‐operated uniform controlled dispensing sprayer twice at 1‐week intervals on 2‐week drought‐stressed plants. Physio‐biochemical attributes including antioxidant enzyme activities were estimated following standard protocols. RT‐PCR was performed to visualise the drought‐associated gene expression patterns.
  • Drought triggered a reduction in RWC and chlorophyll content but these recovered when droughted plants were exposed to GA3. Proline content increased many fold in both varieties under stress, but decreased under the influence of GA3. There was a mixed response of antioxidant enzyme activity, which distinctly declined after GA3 exposure, together with a lesser reduction in dry matter content over that of control plants. With increasing stress, expression of pyrroline‐5‐carboxylase synthetase (P5CS) and betaine‐aldehyde dehydrogenase genes was observed, selectively up‐regulated in CoPK05191. Expression of proline oxidase/transporter was high in CoPK05191 but diminished along with proline content after exposure to GA3. CoLk94184 showed no significant difference in P5CS gene expression under stress condition, whereas expression of betaine‐aldehyde dehydrogenase gene was unchanged in response to stress.
  • Results demonstrated that exposure of droughted plants to GA3 not only led to recovery of activity of drought‐associated physio‐biochemical attributes, but also minimised impact on cane dry weight and quality. Further, GA3 application caused differential gene expression that possibly triggers increased responsiveness towards drought tolerance in sugarcane.
  相似文献   

11.
12.
13.
We evaluated the extent to which males and females evolve along similar or different trajectories in response to the same environmental shift. Specifically, we used replicate experimental introductions in nature to consider how release from a key parasite (Gyrodactylus) generates similar or different defence evolution in male vs. female guppies (Poecilia reticulata). After 4–8 generations of evolution, guppies were collected from the ancestral (parasite still present) and derived (parasite now absent) populations and bred for two generations in the laboratory to control for nongenetic effects. These F2 guppies were then individually infected with Gyrodactylus, and infection dynamics were monitored on each fish. We found that parasite release in nature led to sex‐specific evolutionary responses: males did not show much evolution of resistance, whereas females showed the evolution of increased resistance. Given that male guppies in the ancestral population had greater resistance to Gyrodactylus than did females, evolution in the derived populations led to reduction of sexual dimorphism in resistance. We argue that previous selection for high resistance in males constrained (relative to females) further evolution of the trait. We advocate more experiments considering sex‐specific evolutionary responses to environmental change.  相似文献   

14.
Engineering the production of polyhydroxyalkanoates (PHAs) into high biomass bioenergy crops has the potential to provide a sustainable supply of bioplastics and energy from a single plant feedstock. One of the major challenges in engineering C4 plants for the production of poly[(R)‐3‐hydroxybutyrate] (PHB) is the significantly lower level of polymer produced in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells, thereby limiting the full PHB yield‐potential of the plant. In this study, we provide evidence that the access to substrate for PHB synthesis may limit polymer production in M chloroplasts. Production of PHB in M cells of sugarcane is significantly increased by replacing β‐ketothiolase, the first enzyme in the bacterial PHA pathway, with acetoacetyl‐CoA synthase. This novel pathway enabled the production of PHB reaching an average of 6.3% of the dry weight of total leaf biomass, with levels ranging from 3.6 to 11.8% of the dry weight (DW) of individual leaves. These yields are more than twice the level reported in PHB‐producing sugarcane containing the β‐ketothiolase and illustrate the importance of producing polymer in mesophyll plastids to maximize yield. The molecular weight of the polymer produced was greater than 2 × 106 Da. These results are a major step forward in engineering a high biomass C4 grass for the commercial production of PHB.  相似文献   

15.
Phenotypic plasticity can enhance a species’ ability to persist in a new and stressful environment, so that reaction norms are expected to evolve as organisms encounter novel environments. Biological invasions provide a robust system to investigate such changes. We measured the rates of early growth and development in tadpoles of invasive cane toads (Rhinella marina) in Australia, from a range of locations and at different larval densities. Populations in long‐colonized areas have had the opportunity to adapt to local conditions, whereas at the expanding range edge, the invader is likely to encounter challenges that are both novel and unpredictable. We thus expected invasion‐vanguard populations to exhibit less phenotypic plasticity than range‐core populations. Compared to clutches from long‐colonized areas, clutches from the invasion front were indeed less plastic (i.e. rates of larval growth and development were less sensitive to density). In contrast, those rates were highly variable in clutches from the invasion front, even among siblings from the same clutch under standard conditions. Clutches with highly variable rates of growth and development under constant conditions had lower phenotypic plasticity, suggesting a trade‐off between these two strategies. Although these results reveal a strong pattern, further investigation is needed to determine whether these different developmental strategies are adaptive (i.e. adaptive phenotypic plasticity vs. bet‐hedging) or instead are driven by geographic variation in genetic quality or parental effects.  相似文献   

16.
Bioengineering of photoautotrophic microalgae into CO2 scrubbers and producers of value‐added metabolites is an appealing approach in low‐carbon economy. A strategy for microalgal bioengineering is to enhance the photosynthetic carbon assimilation through genetically modifying the photosynthetic pathways. The halotolerant microalgae Dunaliella posses an unique osmoregulatory mechanism, which accumulates intracellular glycerol in response to extracellular hyperosmotic stresses. In our study, the Calvin cycle enzyme sedoheptulose 1,7‐bisphosphatase from Chlamydomonas reinhardtii (CrSBPase) was transformed into Dunaliella bardawil, and the transformant CrSBP showed improved photosynthetic performance along with increased total organic carbon content and the osmoticum glycerol production. The results demonstrate that the potential of photosynthetic microalgae as CO2 removers could be enhanced through modifying the photosynthetic carbon reduction cycle, with glycerol as the carbon sink.  相似文献   

17.
Microalga‐based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post‐translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas reinhardtii, a widely used green microalga as a model organism and a potential industrial biotechnology platform. We demonstrated that the putative signal sequence from C. reinhardtii gametolysin can assist the secretion of the yellow fluorescent protein Venus into the culture media. To increase the secretion yields, Venus was C‐terminally fused with synthetic glycomodules comprised of tandem serine (Ser) and proline (Pro) repeats of 10 and 20 units [hereafter (SP)n, wherein n = 10 or 20]. The yields of the (SP)n‐fused Venus were higher than Venus without the glycomodule by up to 12‐fold, with the maximum yield of 15 mg/L. Moreover, the presence of the glycomodules conferred an enhanced proteolytic protein stability. The Venus‐(SP)n proteins were shown to be glycosylated, and a treatment of the cells with brefeldin A led to a suggestion that glycosylation of the (SP)n glycomodules starts in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP)n glycomodule to promote a more efficient biomanufacturing of microalgae‐based recombinant proteins.  相似文献   

18.
19.
Previously, we showed that ZFN‐mediated induction of double‐strand breaks (DSBs) at the intended recombination site enhanced the frequency of gene targeting (GT) at an artificial target locus using Agrobacterium‐mediated floral dip transformation. Here, we designed zinc finger nucleases (ZFNs) for induction of DSBs in the natural protoporphyrinogen oxidase (PPO) gene, which can be conveniently utilized for GT experiments. Wild‐type Arabidopsis plants and plants expressing the ZFNs were transformed via floral dip transformation with a repair T‐DNA with an incomplete PPO gene, missing the 5′ coding region but containing two mutations rendering the enzyme insensitive to the herbicide butafenacil as well as an extra KpnI site for molecular analysis of GT events. Selection on butafenacil yielded 2 GT events for the wild type with a frequency of 0.8 × 10?3 per transformation event and 8 GT events for the ZFNs expressing plant line with a frequency of 3.1 × 10?3 per transformation event. Molecular analysis using PCR and Southern blot analysis showed that 9 of the GT events were so‐called true GT events, repaired via homologous recombination (HR) at the 5′ and the 3′ end of the gene. One plant line contained a PPO gene repaired only at the 5′ end via HR. Most plant lines contained extra randomly integrated T‐DNA copies. Two plant lines did not contain extra T‐DNAs, and the repaired PPO genes in these lines were transmitted to the next generation in a Mendelian fashion.  相似文献   

20.
Sustainable production of biofuels from lignocellulose feedstocks depends on cheap enzymes for degradation of such biomass. Plants offer a safe and cost‐effective production platform for biopharmaceuticals, vaccines and industrial enzymes boosting biomass conversion to biofuels. Production of intact and functional protein is a prerequisite for large‐scale protein production, and extensive host‐specific post‐translational modifications (PTMs) often affect the catalytic properties and stability of recombinant enzymes. Here we investigated the impact of plant PTMs on enzyme performance and stability of the major cellobiohydrolase TrCel7A from Trichoderma reesei, an industrially relevant enzyme. TrCel7A was produced in Nicotiana benthamiana using a vacuum‐based transient expression technology, and this recombinant enzyme (TrCel7Arec) was compared with the native fungal enzyme (TrCel7Anat) in terms of PTMs and catalytic activity on commercial and industrial substrates. We show that the N‐terminal glutamate of TrCel7Arec was correctly processed by N. benthamiana to a pyroglutamate, critical for protein structure, while the linker region of TrCel7Arec was vulnerable to proteolytic digestion during protein production due to the absence of O‐mannosylation in the plant host as compared with the native protein. In general, the purified full‐length TrCel7Arec had 25% lower catalytic activity than TrCel7Anat and impaired substrate‐binding properties, which can be attributed to larger N‐glycans and lack of O‐glycans in TrCel7Arec. All in all, our study reveals that the glycosylation machinery of N. benthamiana needs tailoring to optimize the production of efficient cellulases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号