首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
以花生幼叶为外植体进行离体培养,研究BA浓度对花器官分化的影响并进一步观察试管内花器官的发育.结果表明:经MSB 1mg/LBA 0.5mg/LKIN 2mg/LIAA培养基诱导的愈伤组织,转接到附加1~3mg/LBA的MSB培养基上培养,均能直接诱导分化花器官,但2mg/LBA的诱导效率最高达21.13%;诱导分化的花器官转接到MSB培养基继续培养,部分花器官可以在试管内开花、受精、成针、结实.试验实现了以花生幼叶为外植体,在试管内完成诱导花芽、开花、受精、形成果针、子房膨大,直至形成荚果等过程,为离体条件下研究花生花器官分化、荚果及种子发育提供了技术体系和材料.  相似文献   

3.
花生根部性状的遗传分析   总被引:1,自引:0,他引:1  
利用花生RIL群体,分析了11个花生根部性状的遗传力,估算基因对数及性状间的相互关系,根据偏度系数(g1)和峰度系数(g2)估算控制性状的基因互作情况。结果表明:11个性状都是受多基因控制的数量性状,在RIL群体中基因型间的差异均表现为连续变异和明显的超亲分离。侧根干重的遗传力最高达0.60,其次是侧根鲜重,为0.58,而其他性状的遗传力均较低。控制主根长性状的多基因间存在互作,互作方式为重叠作用;控制主根粗(3cm)性状的基因间也存在一定的重叠作用,但是作用不明显;控制其他性状的基因都存在互作,表现为互补作用,但互补作用的强弱有差异。主根粗(1cm)、主根粗(3cm)、主根干重、主根鲜重、侧根干重和侧根鲜重之间都显著或极显著相关;根体积与主根粗(1cm)、主根粗(3cm)、侧根干重和侧根鲜重显著或极显著相关。  相似文献   

4.
Association mapping is a powerful approach for exploring the molecular basis of phenotypic variations in plants. A peanut (Arachis hypogaea L.) mini-core collection in China comprising 298 accessions was genotyped using lo9 simple sequence repeat (SSR) markers, which identified 554 SSR alleles and phenotyped for 15 agronomic traits in three different environments, exhibiting abundant genetic and phenotypic diversity within the panel. A model-based structure analysis assigned all accessions to three groups. Most of the accessions had the relative kinship of less than o.05, indicating that there were no or weak relationships between accessions of the mini- core collection. For 15 agronomic traits in the peanut panel, generally the Q + K model exhibited the best performance to eliminate the false associated positives compared to the Q model and the general linear model-simple model. In total, 89 SSR alleles were identified to be associated with 15 agronomic traits of three environments by the Q+K model-based association analysis. Of these, eight alleles were repeatedly detected in two or three environments, and 15 alleles were commonly detected to be associated with multiple agronomic traits. Simple sequence repeat allelic effects confirmed significant differences between different genotypes of these repeatedly detected markers. Our results demonstrate the great potential of integrating the association analysis and marker-assisted breeding by utilizing the peanut mini-core collection.  相似文献   

5.
Association mapping is a powerful approach for exploring the molecular basis of phenotypic variations in plants.A peanut(Arachis hypogaea L.)mini-core collection in China comprising 298 accessions was genotyped using 109 simple sequence repeat(SSR)markers,which identified 554 SSR alleles and phenotyped for 15 agronomic traits in three different environments,exhibiting abundant genetic and phenotypic diversity within the panel.A model-based structure analysis assigned all accessions to three groups.Most of the accessions had the relative kinship of less than 0.05,indicating that there were no or weak relationships between accessions of the mini-core collection.For 15 agronomic traits in the peanut panel,generally the Q t K model exhibited the best performance to eliminate the false associated positives compared to the Q model and the general linear model-simple model.In total,89SSR alleles were identified to be associated with 15 agronomic traits of three environments by the Q t K model-based association analysis.Of these,eight alleles were repeatedly detected in two or three environments,and 15 alleles were commonly detected to be associated with multiple agronomic traits.Simple sequence repeat allelic effects confirmed significant differences between different genotypes of these repeatedly detected markers.Our results demonstrate the great potential of integrating the association analysis and marker-assisted breeding by utilizing the peanut mini-core collection.  相似文献   

6.
花生重组近交系(RIL)根部性状的遗传分析   总被引:3,自引:0,他引:3  
利用花生R IL群体,分析了主根长、侧根数、根基粗(1 cm和3 cm处)、根体积、主根鲜重、干重、侧根鲜重和干重、主侧根瘤数等11个花生根部性状的遗传力,估算基因对数及性状间的相互关系,根据偏度系数(g1)和峰度系数(g2)的估算控制性状基因互作情况。结果表明:在11个研究性状中,有6个性状在2个亲本间差异显著或极显著。但不论性状在亲本间的差异显著与否,在R IL群体中基因型间的性状差异均表现为连续变异和明显的超亲分离。同时主根粗(1 cm)和主根长的变异系数较小,分别为11.27%和11.218%。11个花生根部性状都是受多基因控制的数量性状,如影响侧根根瘤数、侧根鲜重和侧根干重的基因均在10对左右;而其它性状的基因估计在5~7对左右,尤其是控制侧根数的基因最少为5对左右。而在R IL群体中,除侧根干重的遗传力最高,达0.569,其次是侧根根瘤和侧根数分别达0.545和0.542外,其它性状的遗传力均较低。同时控制主根长和主根粗(1 cm)的基因间存在重叠作用;而控制侧根根瘤、侧根鲜重和侧根干重基因间存在互作,表现为互补作用;控制其它性状的基因间互补或重叠作用不明显或者不存在。主根干重和侧根干重与根体积、主根粗(1 cm)和主根粗(3 cm)显著相关,根体积与主根粗(3 cm)极显著相关,主根鲜重和侧根鲜重与根体积的相关表现不一致。  相似文献   

7.
花生ARAhPR10基因启动子序列的克隆及分析   总被引:1,自引:0,他引:1  
PR10(pathogenesis-related class10protein)类蛋白与植物的抵御外来病害及系统获得性抗性(SAR)有着紧密联系,本文采用基于PCR的基因组DNA步移法,从抗黄曲霉花生品种粤油20中克隆ARAhPR10(Aspergillus flavus-resistant AhPR10)基因起始密码子ATG上游256bp类似启动子序列,并对其进行植物顺式作用元件数据库PLACE预测分析。结果表明,该类似启动子序列含有4处TATA box和2处CAAT box保守的启动子结构元件,还有6处W-box、1处BIHD1和3处GT-1motif抗逆应答元件,其中W-box常见于PR蛋白的启动子区内参与病程应答。我们初步认为本研究克隆的序列可能是ARAhPR10基因的启动子。  相似文献   

8.
Roots and pods of field-grown peanut (groundnut) (Arachis hypogaea L.) were sampled at the R3, R5, and R7 developmental stages and examined in comparison to root- and pod-free soil for microbial population densities to assess the geocarposphere and rhizosphere effects. G/ S (no. geocarposphere microorganisms/no. soil microorganisms) and R/S (no. rhizosphere microorganisms/no. soil microorganisms) ratios were calculated for total fungi,Asperigillus flavus, spore-forming bacilli, coryneform bacteria, fluorescent pseudomonads, and total bacteria isolated on low- and high-nutrient media. A clear geocarposphere effect was evidenced by increased population densities of bacteria and fungi associated with developing pods compared to soil. G/S and R/S ratios were generally greater than 1.0 for all groups of microorganisms except bacilli. G/S ratios were greater for total bacteria than for total fungi at two of the three sample times, suggesting that bacteria were stimulated more than fungi in the zone around developing pods. In contrast, R/S ratios, were higher for total fungi than for total bacteria at two of three sample times. The preferential association of fungi and bacteria with early developmental stages of the pod indicates that some microorganisms are particularly well adapted for colonization of the peanut geocarposphere. These microorganisms are logical candidates for evaluation as biological control candiates forA. flavus.  相似文献   

9.
Peanut, one of the world's most important oilseed crops, has a narrow germplasm base and lacks sources of resistance to several major diseases. The species is considered recalcitrant to transformation, with few confirmed transgenic plants upon particle bombardment or Agrobacterium treatment. Reported transformation methods are limited by low efficiency, cultivar specificity, chimeric or infertile transformants, or availability of explants. Here we present a method to efficiently transform cultivars in both botanical types of peanut, by (1) particle bombardment into embryogenic callus derived from mature seeds, (2) escape-free (not stepwise) selection for hygromycin B resistance, (3) brief osmotic desiccation followed by sequential incubation on charcoal and cytokinin-containing media; resulting in efficient conversion of transformed somatic embryos into fertile, non-chimeric, transgenic plants. The method produces three to six independent transformants per bombardment of 10 cm2 embryogenic callus. Potted, transgenic plant lines can be regenerated within 9 months of callus initiation, or 6 months after bombardment. Transgene copy number ranged from one to 20 with multiple integration sites. There was ca. 50% coexpression of hph and luc or uidA genes coprecipitated on separate plasmids. Reporter gene (luc) expression was confirmed in T1 progeny from each of six tested independent transformants. Insufficient seeds were produced under containment conditions to determine segregation ratios. The practicality of the technique for efficient cotransformation with selected and unselected genes is demonstrated using major commercial peanut varieties in Australia (cv. NC-7, a virginia market type) and Indonesia (cv. Gajah, a spanish market type).  相似文献   

10.
花生分子标记的研究进展   总被引:2,自引:0,他引:2  
国内外对花生的研究特别是在分子水平上的研究相对水稻、油菜等农作物比较薄弱。近些年,分子标记技术迅速发展,在花生上也得到广泛的应用。本文从花生属起源、种质资源的遗传多样性、抗性基因的标记和指纹图谱等方面,综述了国内外花生分子标记的研究进展。  相似文献   

11.
以鲁花14号花生为材料,从花生cDNA文库和基因组中筛选和克隆了花生的金属硫蛋白基因AhMT3a。该基因全长785 bp,有2个内含子,开放阅读框由201个碱基组成,编码66个氨基酸,其中包含13个半胱氨酸(Cys),预测其分子量为6.83kD,等电点为4.59。运用生物信息学手段对AhMT3a蛋白的信号肽、跨膜区、亚细胞定位和疏水性进行了预测。与拟南芥、棉花和草莓等植物type 3 MTs的序列比对结果表明,花生和其他不同植物的MT3在氨基酸序列上具有较高的同源性,从系统发育树中可以看出AhMT3a和蒿麦的金属硫蛋白亲缘关系较近。半定量RT-PCR和芯片杂交结果显示花生AhMT3a在花中表达量最高,在种子中表达量最低;在ABA、NaCl及PEG等不同处理下,表达量变化不大。  相似文献   

12.
Bacterial wilt, caused by Ralstonia solanacearum, is a devastating disease affecting over 350 plant species. A few peanut cultivars were found to possess stable and durable bacterial wilt resistance (BWR). Genomics‐assisted breeding can accelerate the process of developing resistant cultivars by using diagnostic markers. Here, we deployed sequencing‐based trait mapping approach, QTL‐seq, to discover genomic regions, candidate genes and diagnostic markers for BWR in a recombination inbred line population (195 progenies) of peanut. The QTL‐seq analysis identified one candidate genomic region on chromosome B02 significantly associated with BWR. Mapping of newly developed single nucleotide polymorphism (SNP) markers narrowed down the region to 2.07 Mb and confirmed its major effects and stable expressions across three environments. This candidate genomic region had 49 nonsynonymous SNPs affecting 19 putative candidate genes including seven putative resistance genes (R‐genes). Two diagnostic markers were successfully validated in diverse breeding lines and cultivars and could be deployed in genomics‐assisted breeding of varieties with enhanced BWR.  相似文献   

13.
施氮量对不同类型花生品种衰老特性和产量的影响   总被引:5,自引:1,他引:5  
孙虎  王月福  王铭伦  赵长星 《生态学报》2010,30(10):2671-2677
为了探讨花生高产的适宜施氮量,在大田高产条件下,以珍珠豆型花生品种白沙1016和普通型花生品种花育17为材料,研究了施氮量对不同类型花生品种衰老特性和产量的影响。结果表明,两花生品种叶片叶绿素含量和光合速率、SOD和CAT活性均随着施氮量的增加而增加,MDA含量随施氮量的增加而降低,只是白沙1016品种在施氮超过135kg/hm2后上述指标增加或降低不显著,说明增施氮肥可以延缓花生叶片的衰老。在一定施氮量范围内,两花生品种有效荚果数随着施氮量的增加而增加,千克果数随着施氮量的增加而降低,导致荚果产量随着施氮量的增加而增加(珍珠豆型花生品种白沙1016施氮在0-90kg/hm2、普通型花生品种花育17在0-135kg/hm2范围内),但是超过此范围后再增加施氮量反而导致有效荚果数下降、千克果数增多、荚果产量下降。  相似文献   

14.
15.
Transpiration efficiency (TE) is an important trait for drought tolerance in peanut ( Arachis hypogaea L.). The variation in TE was assessed gravimetrically using a long time interval in nine peanut genotypes (Chico, ICGS 44, ICGV 00350, ICGV 86015, ICGV 86031, ICGV 91114, JL 24, TAG 24 and TMV 2) grown in lysimeters under well-watered or drought conditions. Transpiration was measured by regularly weighing the lysimeters, in which the soil surface was mulched with a 2-cm layer of polythene beads. TE in the nine genotypes used varied from 1.4 to 2.9 g kg−1 under well-watered and 1.7 to 2.9 g kg−1 under drought conditions, showing consistent variation in TE among genotypes. A higher TE was found in ICGV 86031 in both well-watered and drought conditions and lower TE was found in TAG-24 under both water regimes. Although total water extraction differed little across genotypes, the pattern of water extraction from the soil profile varied among genotypes. High water extraction within 24 days following stress imposition was negatively related to pod yield ( r 2   =   0.36), and negatively related to water extraction during a subsequent period of 32 days ( r 2   =   0.73). By contrast, the latter, i.e. water extraction during a period corresponding to grain filling (24 to 56 days after flowering) was positively related to pod yield ( r 2   =   0.36). TE was positively correlated with pod weight ( r 2   =   0.30) under drought condition. Our data show that under an intermittent drought regime, TE and water extraction from the soil profile during a period corresponding to pod filling were the most important components.  相似文献   

16.
This study was designed to study the effects of stage of microspore development and culture medium on androgenic response in peanut (Arachis hypogaea L.). Anthers of various developmental stages were cultured for 7 days, then fixed and observed cytologically. Three sets of media, involving different basal media, growth regulators, sucrose levels and glutamine concentrations, were tested. In all experiments, the stage of development of the microspores at the time of culture was highly significant. The early uninucleate microspores stage was identified as producing the highest anther response rating. The effect of media was nonsignificant in all experiments. However, the stepwise modification of the media through the course of the study resulted in an almost 8 x increase in anther response rating. Numerically, the best media tested was N6 basal medium with 1 mg 1-1 NAA, 0.1 mg 1-1 BA, 5.5% sucrose, and 3.5 g 1-1 glutamine. While no haploids were obtained, four-nucleate cells were observed, indicating the potential in peanuts for an androgenic reponse.  相似文献   

17.
Factors affecting somatic embryogenesis in peanut (Arachis hypogaea L.) using leaflet explants of seedlings obtained from aseptically germinated embryo axes were evaluated. Somatic embryogenesis was influenced by developmental stage, leaflet size, induction medium, and time on induction medium. Leaflets that were 5–7 mm long had a greater embryogenic response than smaller or larger leaflets. Percent embryogenesis and mean number of embryos were related to the developmental stage of germinating seedlings. A greater response was obtained if leaflets were folded and closely appressed. Preselection of leaflets increased percent embryogenesis from 21% up to 67%. As leaflets unfolded, embryogenesis decreased; open leaflets lost the potential for embryogenesis. The optimal induction conditions were a 7-day incubation period on Murashige and Skoog medium with 136 μm 2,4-dichlorophenoxyacetic acid and 0.93 μm kinetin. Somatic embryos germinated to form plants that exhibited a normal morphology. Received: 29 December 1997 / Revision received: 9 April 1998 / Accepted: 24 April 1998  相似文献   

18.
Cultivated peanut (Arachis hypogaea L.) is an important grain legume providing high‐quality cooking oil, rich proteins and other nutrients. Shelling percentage (SP) is the 2nd most important agronomic trait after pod yield and this trait significantly affects the economic value of peanut in the market. Deployment of diagnostic markers through genomics‐assisted breeding (GAB) can accelerate the process of developing improved varieties with enhanced SP. In this context, we deployed the QTL‐seq approach to identify genomic regions and candidate genes controlling SP in a recombinant inbred line population (Yuanza 9102 × Xuzhou 68‐4). Four libraries (two parents and two extreme bulks) were constructed and sequenced, generating 456.89–790.32 million reads and achieving 91.85%–93.18% genome coverage and 14.04–21.37 mean read depth. Comprehensive analysis of two sets of data (Yuanza 9102/two bulks and Xuzhou 68‐4/two bulks) using the QTL‐seq pipeline resulted in discovery of two overlapped genomic regions (2.75 Mb on A09 and 1.1 Mb on B02). Nine candidate genes affected by 10 SNPs with non‐synonymous effects or in UTRs were identified in these regions for SP. Cost‐effective KASP (Kompetitive Allele‐Specific PCR) markers were developed for one SNP from A09 and three SNPs from B02 chromosome. Genotyping of the mapping population with these newly developed KASP markers confirmed the major control and stable expressions of these genomic regions across five environments. The identified candidate genomic regions and genes for SP further provide opportunity for gene cloning and deployment of diagnostic markers in molecular breeding for achieving high SP in improved varieties.  相似文献   

19.
20.
A high degree of genetic diversity among 125 peanut bradyrhizobial strains and among 32 peanut cultivars collected from different regions of China was revealed by using the amplified fragment length polymorphism (AFLP) technique. Eighteen different peanut bradyrhizobial genotypes and six peanut cultivars were selected for symbiotic cross-inoculation experiments. The genomic diversity was reflected in the symbiotic diversity. The peanut cultivars varied in their ability to nodulate with the strains used. Some cultivars had a more restricted host range than the others. Also the strains displayed a range of nodulation patterns. In yield formation there were clear differences between the plant cultivar/bradyrhizobium combinations. There was good compatibility between some peanut bradyrhizobial strains and selected cultivars, with inoculation resulting in well-nodulated, high-yielding symbiotic combinations, but no plant cultivar was compatible with all strains used. The strains displayed a varying degree of effectiveness, with some strains being fairly effective with all cultivars and others with selected ones. The AFLP genotypes of the strains did not explain the symbiotic behavior, whereas the yield formation of the plant cultivars was more related to the genotype. It is concluded that to obtain optimal nitrogen fixation efficiency of peanut in the field, compatible plant cultivar-bradyrhizobium combinations should be selected either by finding inoculant strains compatible with the plant cultivars used, or plant cultivars compatible with the indigenous bradyrhizobia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号