共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Rehan Silva Gimme H. Walter Lewis J. Wilson Michael J. Furlong 《Entomologia Experimentalis et Applicata》2014,151(3):239-246
Herbivore‐induced changes in plants have been widely viewed as defensive responses against further insect attack. However, changes in plants as a consequence of herbivore feeding can elicit various responses in herbivores; these are variable, context dependent, and often unpredictable. In this laboratory study, the responses of Thrips tabaci Lindeman (Thysanoptera: Thripidae) to volatiles emitted by intact and herbivore‐damaged or mechanically damaged cotton seedlings [Gossypium hirsutum L. (Malvaceae)] were investigated in dual‐choice olfactometer assays. Thrips tabaci showed increased attraction to seedlings subject to foliar mechanical damage and those with foliar damage inflicted by conspecifics or Tetranychus urticae Koch (Acari: Tetranychidae), upon which it preys. However, T. tabaci did not discriminate between intact seedlings and those with foliar damage inflicted by Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), two other species of thrips, Frankliniella schultzei Trybom and Frankliniella occidentalis Pergrande (Thysanoptera: Thripidae), or those with root damage inflicted by Tenebrio molitor L. (Coleoptera: Tenebrionidae). Attraction of T. tabaci was also affected by herbivore density on damaged plants. That is, seedlings damaged by higher densities of T. urticae or T. tabaci were more attractive than seedlings damaged by lower densities of the corresponding arthropod. Although attracted to plants damaged by conspecifics or T. urticae, T. tabaci showed greater attraction to seedlings damaged by T. urticae than to seedlings damaged by conspecifics. Results are discussed in the context of the responses of F. schultzei and F. occidentalis to herbivore‐induced cotton seedlings, highlighting the complexity, variability, and unpredictability of the responses of even closely related species of insects to plants under herbivore attack. 相似文献
4.
Syed Shan‐e‐Ali Zaidi Rubab Zahra Naqvi Muhammad Asif Susan Strickler Sara Shakir Muhammad Shafiq Abdul Manan Khan Imran Amin Bharat Mishra M. Shahid Mukhtar Brian E. Scheffler Jodi A. Scheffler Lukas A. Mueller Shahid Mansoor 《Plant biotechnology journal》2020,18(3):691-706
Cultivated cotton (Gossypium hirsutum) is the most important fibre crop in the world. Cotton leaf curl disease (CLCuD) is the major limiting factor and a threat to textile industry in India and Pakistan. All the local cotton cultivars exhibit moderate to no resistance against CLCuD. In this study, we evaluated an exotic cotton accession Mac7 as a resistance source to CLCuD by challenging it with viruliferous whiteflies and performing qPCR to evaluate the presence/absence and relative titre of CLCuD‐associated geminiviruses/betasatellites. The results indicated that replication of pathogenicity determinant betasatellite is significantly attenuated in Mac7 and probably responsible for resistance phenotype. Afterwards, to decipher the genetic basis of CLCuD resistance in Mac7, we performed RNA sequencing on CLCuD‐infested Mac7 and validated RNA‐Seq data with qPCR on 24 independent genes. We performed co‐expression network and pathway analysis for regulation of geminivirus/betasatellite‐interacting genes. We identified nine novel modules with 52 hubs of highly connected genes in network topology within the co‐expression network. Analysis of these hubs indicated the differential regulation of auxin stimulus and cellular localization pathways in response to CLCuD. We also analysed the differential regulation of geminivirus/betasatellite‐interacting genes in Mac7. We further performed the functional validation of selected candidate genes via virus‐induced gene silencing (VIGS). Finally, we evaluated the genomic context of resistance responsive genes and found that these genes are not specific to A or D sub‐genomes of G. hirsutum. These results have important implications in understanding CLCuD resistance mechanism and developing a durable resistance in cultivated cotton. 相似文献
5.
6.
T. Quijano‐Medina F. Covelo X. Moreira L. Abdala‐Roberts 《Plant biology (Stuttgart, Germany)》2019,21(5):805-812
- Identifying the mechanisms of compensation to insect herbivory remains a major challenge in plant biology and evolutionary ecology. Most previous studies have addressed plant compensatory responses to one or two levels of insect herbivory, and the underlying traits mediating such responses remain elusive in many cases.
- We evaluated responses associated with compensation to multiple intensities of leaf damage (0% control, 10%, 25%, 50%, 75% of leaf area removed) by means of mechanical removal of foliar tissue and application of a caterpillar (Spodoptera exigua) oral secretions in 3‐month‐old wild cotton plants (Gossypium hirsutum). Four weeks post‐treatment, we measured plant growth and multiple traits associated with compensation, namely: changes in above‐ and belowground, biomass and the concentration of nutrients (nitrogen and phosphorus) and non‐structural carbon reserves (starch and soluble sugars) in roots, stems and leaves.
- We found that wild cotton fully compensated in terms of growth and biomass allocation when leaf damage was low (10%), whereas moderate (25%) to high leaf damage in some cases led to under‐compensation. Nonetheless, high levels of leaf removal (50% and 75%) in most cases did not cause further reductions in height and allocation to leaf and stem biomass relative to low and moderate damage. There were significant positive effects of leaf damage on P concentration in leaves and stems, but not roots, as well as a negative effect on soluble sugars in roots.
- These results indicate that wild cotton fully compensated for a low level of leaf damage but under‐compensated under moderate to high leaf damage, but can nonetheless sustain growth despite increasing losses to herbivory. Such responses were possibly mediated by a re‐allocation of carbohydrate reserves from roots to shoots.
7.
8.
Ying‐Bo Mao Ling‐Jian Wang Xiao‐Xia Shangguan Xiao‐Ya Chen 《Plant biotechnology journal》2016,14(9):1925-1935
9.
Mi Ni Wei Ma Xiaofang Wang Meijing Gao Yan Dai Xiaoli Wei Lei Zhang Yonggang Peng Shuyuan Chen Lingyun Ding Yue Tian Jie Li Haiping Wang Xiaolin Wang Guowang Xu Wangzhen Guo Yihua Yang Yidong Wu Shannon Heuberger Bruce E. Tabashnik Tianzhen Zhang Zhen Zhu 《Plant biotechnology journal》2017,15(9):1204-1213
Transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are extensively cultivated worldwide. To counter rapidly increasing pest resistance to crops that produce single Bt toxins, transgenic plant ‘pyramids’ producing two or more Bt toxins that kill the same pest have been widely adopted. However, cross‐resistance and antagonism between Bt toxins limit the sustainability of this approach. Here we describe development and testing of the first pyramids of cotton combining protection from a Bt toxin and RNA interference (RNAi). We developed two types of transgenic cotton plants producing double‐stranded RNA (dsRNA) from the global lepidopteran pest Helicoverpa armigera designed to interfere with its metabolism of juvenile hormone (JH). We focused on suppression of JH acid methyltransferase (JHAMT), which is crucial for JH synthesis, and JH‐binding protein (JHBP), which transports JH to organs. In 2015 and 2016, we tested larvae from a Bt‐resistant strain and a related susceptible strain of H. armigera on seven types of cotton: two controls, Bt cotton, two types of RNAi cotton (targeting JHAMT or JHBP) and two pyramids (Bt cotton plus each type of RNAi). Both types of RNAi cotton were effective against Bt‐resistant insects. Bt cotton and RNAi acted independently against the susceptible strain. In computer simulations of conditions in northern China, where millions of farmers grow Bt cotton as well as abundant non‐transgenic host plants of H. armigera, pyramided cotton combining a Bt toxin and RNAi substantially delayed resistance relative to using Bt cotton alone. 相似文献
10.
Baoqian Lu Sharon Downes Lewis Wilson Peter Gregg Kristen Knight Greg Kauter Bruce McCorkell 《Entomologia Experimentalis et Applicata》2012,145(1):72-81
To verify current thresholds for Bollgard II® cotton in Australia, the impact of Helicoverpa spp. (Lepidoptera: Noctuidae) larvae on yield, development, and quality under various infestation intensities and durations, and stages of growth, was tested using small plot field experiments over two seasons. Infestation with up to 80 eggs m?1 of Helicoverpa armigera (Hübner) and Helicoverpa punctigera Wallengren showed that species, infestation level, and stage of growth had no significant effect on yields of seed‐cotton or lint and on maturity and fibre quality. The duration of infestation of white flowers with H. punctigera neonates (maximum of every day for up to 4 weeks) had no impact on the yield of seed‐cotton or lint, maturity, and fibre quality, but when 100% of flowers were infested (compared with 0 or 50%), seed‐cotton and lint yields were significantly reduced and maturity was delayed. Infestation with up to 18 medium H. armigera larvae m?1 at several plant stages did not significantly affect yields of seed‐cotton and lint, maturity, and fibre quality. A heliocide spray applied on a commercial farm at the current threshold resulted in a significantly higher lint yield, compared with a farm where no spray was applied. In conclusion, Bollgard II® cotton is highly resistant to Helicoverpa spp. infestation. 相似文献
11.
S. V. Ramu S. Rohini G. Keshavareddy M. Gowri Neelima N. B. Shanmugam A. R. V. Kumar S. K. Sarangi P. Ananda Kumar M. Udayakumar 《Journal of Applied Entomology》2012,136(9):675-687
Pigeon pea is an important legume. Yield losses due to insect pests are enormous in the cultivation of this crop. Expression of cry proteins has led to increased resistance to pests in several crops. We report in this paper, expression of a chimeric cry1AcF (encoding cry1Ac and cry1F domains) gene in transgenic pigeon pea and its resistance towards Helicoverpa armigera. PCR, Southern hybridization, RT‐PCR and Western analysis confirmed stable integration and expression of the cry1AcF gene in pigeon pea transgenics. When screened for efficacy of the transformants for resistance against H. armigera, the transgenics showed not only high mortality of the larva but could also resist the damage caused by the larvae. Analysis for the stable integration, expression and efficacy of the transgenics resulted in the identification of four T3 plants arising from two T1 backgrounds as highly promising. The results demonstrate potentiality of the chimeric cry1AcF gene in developing H. armigera‐resistant pigeon pea. 相似文献
12.
Knowing how climate change affects the population dynamics of insect pests is critical for the future of integrated pest management. Rising winter temperatures from global warming can drive increases in outbreaks of some agricultural pests. In contrast, here we propose an alternative hypothesis that both extremely cold and warm winters can mismatch the timing between the eclosion of overwintering pests and the flowering of key host plants. As host plants normally need higher effective cumulative temperatures for flowering than insects need for eclosion, changes in flowering time will be less dramatic than changes in eclosion time, leading to a mismatch of phenology on either side of the optimal winter temperature. We term this the “seesaw effect.” Using a long‐term dataset of the Old World cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in northern China, we tested this seesaw hypothesis by running a generalized additive model for the effects of the third generation moth in the preceding year, the winter air temperature, the number of winter days below a critical temperature and cumulative precipitation during winter on the demography of the overwintering moth. Results confirmed the existence of the seesaw effect of winter temperature change on overwintering populations. Pest management should therefore consider the indirect effect of changing crop phenology (whether due to greenhouse cultivation or to climate change) on pest outbreaks. As arthropods from mid‐ and high latitudes are actually living in a cooler thermal environment than their physiological optimum in contrast to species from lower latitudes, the effects of rising winter temperatures on the population dynamics of arthropods in the different latitudinal zones should be considered separately. The seesaw effect makes it more difficult to predict the average long‐term population dynamics of insect pests at high latitudes due to the potential sharp changes in annual growth rates from fluctuating minimum winter temperatures. 相似文献
13.
Jinlei Han Baoliang Zhou Wenbo Shan Liying Yu Weiren Wu Kai Wang 《The Plant journal : for cell and molecular biology》2015,84(6):1167-1177
Chromosomal dispositions were analyzed on the metaphase plate of tetraploid cotton (AADD). At metaphase, the two subgenomes, A and D, were separated in a radial pattern in which the small D subgenome chromosomes tended to concentrate at the center and the large A subgenome chromosomes were scattered about the periphery on the metaphase plate. Although the ordered chromosome arrangement was disturbed in an artificial hexaploid (AADDGG), the separation pattern could be recovered after the majority of the additional genome (GG) chromosomes were removed by backcrossing the artificial hexaploid with the tetraploid cotton (AADD). A similar genome separation phenomenon was also found in synthesized tetraploid cotton (AAGG). These results indicate that the genome separation pattern could be established immediately after tetraploid cotton formation and could be stably inherited in tetraploid cotton. Given the evidence of parental genome separation in other plants and animals, we speculated that genome separation might be a normal phenomenon in diploid and polyploid species. These finding will shed light on the chromosome conformation in plant cells. 相似文献
14.
V. Surekha Devi P. A. Rao S. P. Sharma H. C. Sharma 《Journal of Applied Entomology》2014,138(4):289-296
The gram pod borer, Helicoverpa armigera, is one of the most important constraints to chickpea production. High acidity of chickpea exudates is associated with resistance to pod borer, H. armigera; however, acidic exudates in chickpea might influence the biological activity of the bacterium, Bacillus thuringiensis (Bt), applied as a foliar spray or deployed in transgenic plants for controlling H. armigera. Therefore, studies were undertaken to evaluate the biological activity of Bt towards H. armigera on chickpea genotypes with different amounts of organic acids. Significantly lower leaf feeding, larval survival and larval weights were observed on ICC 506EB, followed by C 235, and ICCV 10 across Bt concentrations. Leaf feeding by the larvae and larval survival and weights decreased with an increase in Bt concentration. However, rate of decrease in leaf feeding and larval survival and weights with an increase in Bt concentration was greater on L 550 and ICCV 10 than on the resistant check, ICC 506EB, suggesting that factors in the resistant genotypes, particularly the acid exudates, resulted in lower levels of biological activity of Bt possibly because of antifeedant effects of the acid exudates. Antifeedant effects of acid exudates reduced food consumption and hence might reduce the efficacy of Bt sprays on insect‐resistant chickpea genotypes or Bt‐transgenic chickpeas, although the combined effect of plant resistance based on organic acids, and Bt had a greater effect on survival and development of H. armigera than Bt alone. 相似文献
15.
16.
Zhen Yue Xiaoguang Liu Zijing Zhou Guangming Hou Jinping Hua Zhangwu Zhao 《Plant biotechnology journal》2016,14(8):1747-1755
The transgenic Bt cotton plant has been widely planted throughout the world for the control of cotton budworm Helicoverpa armigera (Hubner). However, a shift towards insect tolerance of Bt cotton is now apparent. In this study, the gene encoding neuropeptide F (NPF) was cloned from cotton budworm H. armigera, an important agricultural pest. The npf gene produces two splicing mRNA variants—npf1 and npf2 (with a 120‐bp segment inserted into the npf1 sequence). These are predicted to form the mature NPF1 and NPF2 peptides, and they were found to regulate feeding behaviour. Knock down of larval npf with dsNPF in vitro resulted in decreases of food consumption and body weight, and dsNPF also caused a decrease of glycogen and an increase of trehalose. Moreover, we produced transgenic tobacco plants transiently expressing dsNPF and transgenic cotton plants with stably expressed dsNPF. Results showed that H. armigera larvae fed on these transgenic plants or leaves had lower food consumption, body size and body weight compared to controls. These results indicate that NPF is important in the control of feeding of H. armigera and valuable for production of potential transgenic cotton. 相似文献
17.
18.
Thuanne Pires Ribeiro Fabricio Barbosa Monteiro Arraes Isabela Tristan Lourenço‐Tessutti Marilia Santos Silva Maria Eugênia Lisei‐de‐Sá Wagner Alexandre Lucena Leonardo Lima Pepino Macedo Janaina Nascimento Lima Regina Maria Santos Amorim Sinara Artico Márcio Alves‐Ferreira Maria Cristina Mattar Silva Maria Fatima Grossi‐de‐Sa 《Plant biotechnology journal》2017,15(8):997-1009
19.
Hao Zhang Haichao Li Ruobing Guan Xuexia Miao 《Entomologia Experimentalis et Applicata》2015,155(3):218-228
20.