首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular biology of fruit ripening and its manipulation with antisense genes   总被引:25,自引:0,他引:25  
Considerable progress in tomato molecular biology has been made over the past five years. At least 19 different mRNAs which increase in amount during tomato fruit ripening have been cloned and genes for enzymes involved in cell wall degradation (polygalacturonase and pectinesterase) and ethylene synthesis (ACC synthase) have been identified by conventional procedures. Transgenic plants have been used to identify regions of DNA flanking fruit-specific, ripening-related and ethylene-regulated genes and trans-acting factors which bind to these promoters have also been identified.Antisense genes expressed in transgenic plants have proved to be highly effective for inhibiting the specific expression of ripening-related genes. These experiments have changed our understanding of how softening occurs in tomato fruit. Antisense techniques have also been used to identify genes encoding enzymes for carotenoid biosynthesis (phytoene synthase) and ethylene biosynthesis (the ethylene-forming enzyme). The altered characteristics of fruit transformed with specific antisense genes, such as retarded ripening and resistance to splitting, may prove to be of value to fruit growers, processors and ultimately the consumer.  相似文献   

2.
Virus-induced gene silencing in tomato fruit   总被引:16,自引:0,他引:16  
Virus-induced gene silencing (VIGS) is a powerful tool for the study of gene function in plants. Here we report that either by syringe-infiltrating the tobacco rattle virus (TRV)-vector into the surface, stem or carpopodium of a tomato fruit attached to the plant or by vacuum-infiltrating into a tomato fruit detached from the plant, TRV can efficiently spread and replicate in the tomato fruit. Although VIGS can be performed in tomato fruit by all of the means mentioned above, the most effective method is to inject the TRV-vector into the carpopodium of young fruit attached to the plant about 10 days after pollination. Several reporter genes related to ethylene responses and fruit ripening, including LeCTR1 and LeEILs genes, were also successfully silenced by this method during fruit development. In addition, we found that the silencing of the LeEIN2 gene results in the suppression of tomato fruit ripening. The results of our study indicate that the application of VIGS techniques by the described methods can be successfully applied to tomato fruit and is a valuable tool for studying functions of the relevant genes during fruit developing.  相似文献   

3.
Fruits are an important part of a healthy diet. They provide essential vitamins and minerals, and their consumption is associated with a reduced risk of heart disease and certain cancers. These important plant products can, however, be expensive to purchase, may be of disappointing quality and often have a short shelf life. A major challenge for crop improvement in fleshy fruit species is the enhancement of their health‐promoting attributes while improving quality and reducing postharvest waste. To achieve these aims, a sound mechanistic understanding of the processes involved in fruit development and ripening is needed. In recent years, substantial insights have been made into the mechanistic basis of ethylene biosynthesis, perception and signalling and the identity of master regulators of ripening that operate upstream of, or in concert with a regulatory pathway mediated by this plant hormone. The role of other plant hormones in the ripening process has, however, remained elusive, and the links between regulators and downstream processes are still poorly understood. In this review, we focus on tomato as a model for fleshy fruit and provide an overview of the molecular circuits known to be involved in ripening, especially those controlling pigment accumulation and texture changes. We then discuss how this information can be used to understand ripening in other fleshy fruit‐bearing species. Recent developments in comparative genomics and systems biology approaches are discussed. The potential role of epigenetic changes in generating useful variation is highlighted along with opportunities for enhancing the level of metabolites that have a beneficial effect on human health.  相似文献   

4.
The role of the cell wall hydrolase polygalacturonase (PG) during fruit ripening was investigated using novel mutant tomato lines in which expression of the PG gene has been down regulated by antisense RNA. Tomato plants were transformed with chimaeric genes designed to express anti-PG RNA constitutively. Thirteen transformed lines were obtained of which five were analysed in detail. All contained a single PG antisense gene, the expression of which led to a reduction in PG enzyme activity in ripe fruit to between 5% and 50% that of normal. One line, GR16, showed a reduction to 10% of normal PG activity. The reduction in activity segregated with the PG antisense gene in selfed progeny of GR16. Plants homozygous for the antisense gene showed a reduction of PG enzyme expression of greater than 99%. The PG antisense gene was inherited stably through two generations. In tomato fruit with a residual 1% PG enzyme activity pectin depolymerisation was inhibited, indicating that PG is involved in pectin degradation in vivo. Other ripening parameters, such as ethylene production, lycopene accumulation, polyuronide solubilisation, and invertase activity, together with pectinesterase activity were not affected by the expression of the antisense gene.  相似文献   

5.
6.
Polyamines (PAs) are ubiquitous, polycationic biogenic amines that are implicated in many biological processes, including plant growth and development, but their precise roles remain to be determined. Most of the previous studies have involved three biogenic amines: putrescine (Put), spermidine (Spd) and spermine (Spm), and their derivatives. We have expressed a yeast spermidine synthase (ySpdSyn) gene under constitutive (CaMV35S) and fruit‐ripening specific (E8) promoters in Solanum lycopersicum (tomato), and determined alterations in tomato vegetative and fruit physiology in transformed lines compared with the control. Constitutive expression of ySpdSyn enhanced intracellular levels of Spd in the leaf, and transiently during fruit development, whereas E8ySpdSyn expression led to Spd accumulation early and transiently during fruit ripening. The ySpdSyn transgenic fruits had a longer shelf life, reduced shriveling and delayed decay symptom development in comparison with the wild‐type (WT) fruits. An increase in shelf life of ySpdSyn transgenic fruits was not facilitated by changes in the rate of water loss or ethylene evolution. Additionally, the expression of several cell wall and membrane degradation‐related genes in ySpdSyn transgenic fruits was not correlated with an extension of shelf life, indicating that the Spd‐mediated increase in fruit shelf life is independent of the above factors. Crop maturity, indicated by the percentage of ripening fruits on the vine, was delayed in a CaMV35SySpdSyn genotype, with fruits accumulating higher levels of the antioxidant lycopene. Notably, whole‐plant senescence in the transgenic plants was also delayed compared with WT plants. Together, these results provide evidence for a role of PAs, particularly Spd, in increasing fruit shelf life, probably by reducing post‐harvest senescence and decay.  相似文献   

7.
8.
Ethylene and polyamine metabolism, both sharing a common precursor, S-adenosylmethionine (SAM), were investigated during detached tomato (Lycopersicon esculentum Mill. nothovar F1 Lorena) fruit ripening. Putrescine (PUT) was found to be the major polyamine in the fruits, always over 100 nmols/g FW, while spermidine (SPD) was between 7% and 3% of the level of PUT. Spermine (SPM) was not detected at any stage of ripening. The level of PUT and SPD, did not change significantly during ripening in spite of the almost continuous synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC), the ethylene precursor, and only at the last stage of ripening was a drastic decrease in SPD content observed. The results obtained show that the onset of ACC synthesis and its accumulation within the tissue is not a consequence of a decrease in SPD synthesis.  相似文献   

9.
10.
In the years since we last reviewed the use of mutants to study tomato fruit ripening ( Grierson et al. 1987 ), considerable information has been gained by the cloning, sequencing and identification of many mRNAs implicated in this developmental process. Genes involved in cell wall degradation, colour change and ethylene synthesis have been cloned, and antisense techniques have been developed and used to produce genetically engineered mutant fruit deficient in these aspects of ripening (see Gray et al. 1992 ). Recently, a previously cloned ripening gene has been used to complement a naturally occurring fruit colour mutant, yellow flesh ( Fray & Grierson 1993a ), and a ripening impaired mutant, ripening inhibitor, has been used to identify several new ripening-related mRNAs ( Picton et al. 1993b ). The chromosomal region bearing the ripening inhibitor mutation has been subjected to high-resolution mapping ( Churchill, Giovannoni & Tanksley 1993 ) and chromosome walking experiments are in progress to identify this gene.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Summary The chromosomal genes chvA and chvB of Agrobacterium tumefaciens, which mediate attachment to plant cells, were found to be essential not only for tumour induction but also for the formation of root nodules on plants.  相似文献   

18.
Ti质粒介导的磷酸烯醇式丙酮酸羧化酶cDNA转化烟草植株   总被引:1,自引:0,他引:1  
将玉米C4-磷酸烯醇式丙酮酸羧化酶(PEP羧化酶)cDNA亚克隆至穿梭质粒pBin19,通过在杆菌Ti质粒(LBA4404)介导的时圆片共培养法将其转入C3植物烟草中。在获得的抗性转化植株中,80%具有较强的NPTⅡ报道基因表达。Southern杂交表明C4-PEP羧化酶cDNA已被整合到了烟草核基因组中。  相似文献   

19.
20.
Genetic modification in plants helps us to understand molecular mechanisms underlying on plant fitness and to improve profitable crops. However, in transgenic plants, the value of gene expression often varies among plant populations of distinct lines and among generations of identical individuals. This variation is caused by several reasons, such as differences in the chromosome position, repeated sequences, and copy number of the inserted transgene. Developing a state-of-art technology to avoid the variation of gene expression levels including gene silencing has been awaited. Here, we developed a novel binary plasmid (pTACAtg1) that is based on a transformation-competent artificial chromosome (TAC) vector, harboring long genomic DNA fragments on both sides of the cloning sites. As a case study, we cloned the cauliflower mosaic virus 35S promoter:β-glucuronidase (35S:GUS) gene cassettes into the pTACAtg1, and introduced it with long flanking sequences on the pTACAtg1 into the plants. In isolated transgenic plants, the copy number was reduced and the GUS expressions were detected more stably than those in the control plants carrying the insert without flanking regions. In our result, the reduced copy number of a transgene suppressed variation and silencing of its gene expression. The pTACAtg1 vector will be suitable for the production of stable transformants and for expression analyses of a transgene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号