首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism‐based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high‐density Affymetrix Axiom® genotyping array (the Wheat Breeders’ Array), in a high‐throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders’ Array is also suitable for generating high‐density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site ‘CerealsDB’.  相似文献   

2.
Agronomically important traits are frequently controlled by rare, genotype‐specific alleles. Such genes can only be mapped in a population derived from the donor genotype. This requires the development of a specific genetic map, which is difficult in wheat because of the low level of polymorphism among elite cultivars. The absence of sufficient polymorphism, the complexity of the hexaploid wheat genome as well as the lack of complete sequence information make the construction of genetic maps with a high density of reproducible and polymorphic markers challenging. We developed a genotype‐specific genetic map of chromosome 3B from winter wheat cultivars Arina and Forno. Chromosome 3B was isolated from the two cultivars and then sequenced to 10‐fold coverage. This resulted in a single‐nucleotide polymorphisms (SNP) database of the complete chromosome. Based on proposed synteny with the Brachypodium model genome and gene annotation, sequences close to coding regions were used for the development of 70 SNP‐based markers. They were mapped on a Arina × Forno Recombinant Inbred Lines population and found to be spread over the complete chromosome 3B. While overall synteny was well maintained, numerous exceptions and inversions of syntenic gene order were identified. Additionally, we found that the majority of recombination events occurred in distal parts of chromosome 3B, particularly in hot‐spot regions. Compared with the earlier map based on SSR and RFLP markers, the number of markers increased fourfold. The approach presented here allows fast development of genotype‐specific polymorphic markers that can be used for mapping and marker‐assisted selection.  相似文献   

3.
In wheat, the deployment of marker‐assisted selection has long been hampered by the lack of markers compatible with high‐throughput cost‐effective genotyping techniques. Recently, insertion site‐based polymorphism (ISBP) markers have appeared as very powerful new tools for genomics and genetic studies in hexaploid wheat. To demonstrate their possible use in wheat breeding programmes, we assessed their potential to meet the five main requirements for utilization in MAS: flexible and high‐throughput detection methods, low quantity and quality of DNA required, low cost per assay, tight link to target loci and high level of polymorphism in breeding material. Toward this aim, we developed a programme, IsbpFinder, for the automated design of ISBP markers and adapted three detection methods (melting curve analysis, SNaPshot® Multiplex System and Illumina BeadArray technology) for high throughput and flexible detection of ISBP or ISBP‐derived SNP markers. We demonstrate that the high level of polymorphism of the ISBPs combined with cost‐effective genotyping methods can be used to efficiently saturate genetic maps, discriminate between elite cultivars, and design tightly linked diagnostic markers for virtually all target loci in the wheat genome. All together, our results suggest that ISBP markers have the potential to lead to a breakthrough in wheat marker‐assisted selection.  相似文献   

4.
小麦A/B染色体组SSR标记在新小麦合成前后的比较研究   总被引:1,自引:0,他引:1  
微卫星分子标记已广泛用于普通小麦遗传和进化研究。由于人工合成小麦与小麦品种之间存在高的遗传多样性,人工合成小麦已被大量应用于小麦分子标记工作中。但是,目前还缺乏人工合成小麦的异源六倍化过程对微卫星影响的研究。本研究直接比较了四倍体小麦与节节麦远缘杂交并经染色体加倍获得人工合成小麦前后,位于普通小麦A/B染色体组不同染色体臂上的66个特异引物揭示的微卫星位点的保守性和可转移性。结果表明,除了一个引物在新合成小麦中扩增出供体亲本没有的新带,一个引物在节节麦扩增出的产物在新合成小麦中消失,其他的所有微卫星引物的扩增产物在小麦合成前后是保守的,没有变异发生。所有的引物能够在四倍体小麦中扩增出微卫星产物,四倍体小麦中的扩增产物也出现在新的人工合成小麦中;有70%的引物能够在节节麦扩增出产物,其中的绝大多数产物也出现在新的人工合成小麦中。因此,普通小麦A/B染色体组的这些微卫星引物除了在人工合成小麦的A/B染色体组中扩增出产物,还能在其D染色体组中扩增出产物,也就是说,这些引物对人工合成小麦而言,并非是A/B染色体组特异的。根据该研究结果,讨论了小麦微卫星的可转移性和特异性问题,重点讨论了在应用人工合成小麦构建的遗传群体进行微卫星分子标记中的应用价值及其应该注意的问题。  相似文献   

5.
Synthetic hexaploid wheat (SHW) that combines novel and elite genes from the tetraploid wheat Triticum turgidum L. and wild ancestor Aegilops tauschii Coss., has been used to genetically improve hexaploid common wheat. The abundant genetic diversity in SHW can effectively make breakthroughs in wheat genetic improvement through the inclusion of increased variation. In this paper, we reviewed the current advances in research and utilization of the primary SHW lines and SHW-derived wheat varieties that have enhanced evolution of modern wheat under conditions of natural and artificial selection in southwestern China. Using primary SHW lines, four high-yielding wheat varieties have been developed. In addition, using the SHW-derived varieties as breeding parents, 12 new wheat varieties were also developed. Results of genotype–phenotype and fingerprint analysis showed that the introgressed alleles from SHW lines have contributed a great number of elite characters to the new wheat varieties, and these elite characters include disease resistance, more spikes per plant, more grains per spike, larger grains, and higher grain-yield potential. We found that the primary SHW lines and SHW-derived varieties have identifiable effects to enhance genetic variation and adaptive evolution of modern hexaploid wheat, which significantly increased the grain yields of hexaploid wheat in recent years. These findings have significant implications in the breeding of high-yielding wheat varieties resistant to biotic and abiotic stresses using SHW as genetic resources.  相似文献   

6.
Synthetic hexaploid wheat (Triticum turgidum x Aegilops tauschii) was created to explore for novel genes from T. turgidum and Ae. tauschii that can be used for common wheat improvement. In the present paper, research advances on the utilization of synthetic hexaploid wheat for wheat genetic improvement in China are reviewed. Over 200 synthetic hexaploid wheat (SHW) accessions from the International Maize and Wheat Improvement Centre (CIMMYT) were introduced into China since 1995. Four cultivars derived from these, Chuanmai 38, Chuanmai 42, Chuanmai 43 and Chuanmai 47, have been released in China. Of these, Chuanmai 42, with large kernels and resistance to stripe rust, had the highest average yield (〉 6 t/ha) among all cultivars over two years in Sichuan provincial yield trials, outyielding the commercial check cultivar Chuanmai 107 by 22,7%. Meanwhile, by either artificial chromosome doubling via colchicine treatment or spontaneous chromosome doubling via a union of unreduced gametes (2n) from T. turgidum-Ae, tauschii hybrids, new SHW lines were produced in China. Mitotic-like meiosis might be the cytological mechanism of spontaneous chromosome doubling. SHW lines with genes for spontaneous chromosome doubling may be useful for producing new SHW-alien amphidiploids and double haploid in wheat genetic improvement.  相似文献   

7.
Globally, wheat is the most widely grown crop and one of the three most important crops for human and livestock feed. However, the complex nature of the wheat genome has, until recently, resulted in a lack of single nucleotide polymorphism (SNP)‐based molecular markers of practical use to wheat breeders. Recently, large numbers of SNP‐based wheat markers have been made available via the use of next‐generation sequencing combined with a variety of genotyping platforms. However, many of these markers and platforms have difficulty distinguishing between heterozygote and homozygote individuals and are therefore of limited use to wheat breeders carrying out commercial‐scale breeding programmes. To identify exome‐based co‐dominant SNP‐based assays, which are capable of distinguishing between heterozygotes and homozygotes, we have used targeted re‐sequencing of the wheat exome to generate large amounts of genomic sequences from eight varieties. Using a bioinformatics approach, these sequences have been used to identify 95 266 putative single nucleotide polymorphisms, of which 10 251 were classified as being putatively co‐dominant. Validation of a subset of these putative co‐dominant markers confirmed that 96% were true polymorphisms and 65% were co‐dominant SNP assays. The new co‐dominant markers described here are capable of genotypic classification of a segregating locus in polyploid wheat and can be used on a variety of genotyping platforms; as such, they represent a powerful tool for wheat breeders. These markers and related information have been made publically available on an interactive web‐based database to facilitate their use on genotyping programmes worldwide.  相似文献   

8.
Diploid A genome species of wheat harbour immense variability for biotic stresses and productivity traits, and these could be transferred efficiently to hexaploid wheat through marker assisted selection, provided the target genes are tagged at diploid level first. Here we report an integrated molecular linkage map of A genome diploid wheat based on 93 recombinant inbred lines (RILs) derived from Triticum boeoticum × Triticum monococcum inter sub-specific cross. The parental lines were analysed with 306 simple sequence repeat (SSR) and 194 RFLP markers, including 66 bin mapped ESTs. Out of 306 SSRs tested for polymorphism, 74 (24.2%) did not show amplification (null) in both the parents. Overall, 171 (73.7%) of the 232 remaining SSR and 98 (50.5%) of the 194 RFLP markers were polymorphic. Both A and D genome specific SSR markers showed similar transferability to A genome of diploid wheat species. The 176 polymorphic markers, that were assayed on a set of 93 RILs, yielded 188 polymorphic loci and 177 of these as well as two additional morphological traits mapped on seven linkage groups with a total map length of 1,262 cM, which is longer than most of the available A genome linkage maps in diploid and hexaploid wheat. About 58 loci showed distorted segregation with majority of these mapping on chromosome 2Am. With a few exceptions, the position and order of the markers was similar to the ones in other maps of the wheat A genome. Chromosome 1Am of T. monococcum and T. boeoticum showed a small paracentric inversion relative to the A genome of hexaploid wheat. The described linkage map could be useful for gene tagging, marker assisted gene introgression from diploid into hexaploid wheat as well as for map based cloning of genes from diploid A genome species and orthologous genes from hexaploid wheat.  相似文献   

9.
Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker‐assisted selection (MAS) in breeding programmes. A crucial step in the successful application of MAS in breeding programmes is the development of cheap and easy to use molecular markers, such as single‐nucleotide polymorphisms. To mine selected elite wheat germplasm for intervarietal single‐nucleotide polymorphisms, we have used expressed sequence tags derived from public sequencing programmes and next‐generation sequencing of normalized wheat complementary DNA libraries, in combination with a novel sequence alignment and assembly approach. Here, we describe the development and validation of a panel of 1114 single‐nucleotide polymorphisms in hexaploid bread wheat using competitive allele‐specific polymerase chain reaction genotyping technology. We report the genotyping results of these markers on 23 wheat varieties, selected to represent a broad cross‐section of wheat germplasm including a number of elite UK varieties. Finally, we show that, using relatively simple technology, it is possible to rapidly generate a linkage map containing several hundred single‐nucleotide polymorphism markers in the doubled haploid mapping population of Avalon × Cadenza.  相似文献   

10.
Stripe or yellow rust caused by Puccinia striiformis f. sp. tritici is a threat to many of the existing cultivars of Pakistan. Many attempts are being made to evolve new varieties resistant to stripe rust to reduce the losses caused by this disease. For this purpose, novel genes are needed to incorporate into the existing cultivars. These genes are found in the wild progenitors of wheat that are D-genome donors to wheat. As a result of extensive research, wheat synthetic hexaploids have been developed. These synthetics have resistances against biotic as well as abiotic stresses including the yellow rust. A group of such synthetics has been identified which seems resistant to this destructive disease. This group was tested under field conditions to identify resistance against stripe rust. The same population was analysed at molecular level to explore the genetic diversity for rust resistance. Genetic diversity among 34 selected synthetic hexaploid wheats was studied by random amplified polymorphic DNA (RAPD) analysis. A set of 12 RAPD primers was applied, and the level of polymorphism was found to be 46.67%. The coefficients in the range of 71–100% were detected by genetic similarity matrix based on Nei and Li's index. These coefficients were used for constructing a dendrogram using unweighted pair group of arithmetic means. Synthetic hexaploid line 34 was found to exhibit maximum genetic distances among the 34 selected lines. The same accession also showed excellent phenotypic characters with above average grain weight. These synthetic hexaploids carrying genetic potential for stripe rust resistance and morphological traits should be useful for improvement of existing wheat cultivars.  相似文献   

11.
Genetic variation present in 64 durum wheat accessions was investigated by using three sources of microsatellite (SSR) markers: EST-derived SSRs (EST-SSRs) and two sources of SSRs isolated from total genomic DNA. Out of 245 SSR primer pairs screened, 22 EST-SSRs and 20 genomic-derived SSRs were polymorphic and used for genotyping. The EST-SSR primers produced high quality markers, but had the lowest level of polymorphism (25%) compared to the other two sources of genomic SSR markers (53%). The 42 SSR markers detected 189 polymorphic alleles with an average number of 4.5 alleles per locus. The coefficient of similarity ranged from 0.28 to 0.70 and the estimates of similarity varied when different sources of SSR markers were used to genotype the accessions. This study showed that EST-derived SSR markers developed in bread wheat are polymorphic in durum wheat when assaying loci of the A and B genomes. A minumum of ten EST-SSRs generated a very low probability of identity (0.36×10−12) indicating that these SSRs have a very high discriminatory power. EST-SSR markers directly sample variation in transcribed regions of the genome, which may enhance their value in marker-assisted selection, comparative genetic analysis and for exploiting wheat genetic resources by providing a more-direct estimate of functional diversity. Received: 19 December 2000 / Accepted: 17 April 2001  相似文献   

12.
The polyploid nature of hexaploid wheat (T. aestivum, AABBDD) often represents a great challenge in various aspects of research including genetic mapping, map-based cloning of important genes, and sequencing and accurately assembly of its genome. To explore the utility of ancestral diploid species of polyploid wheat, sequence variation of T. urartu (AuAu) was analyzed by comparing its 277-kb large genomic region carrying the important Glu-1 locus with the homologous regions from the A genomes of the diploid T. monococcum (AmAm), tetraploid T. turgidum (AABB), and hexaploid T. aestivum (AABBDD). Our results revealed that in addition to a high degree of the gene collinearity, nested retroelement structures were also considerably conserved among the Au genome and the A genomes in polyploid wheats, suggesting that the majority of the repetitive sequences in the A genomes of polyploid wheats originated from the diploid Au genome. The difference in the compared region between Au and A is mainly caused by four differential TE insertion and two deletion events between these genomes. The estimated divergence time of A genomes calculated on nucleotide substitution rate in both shared TEs and collinear genes further supports the closer evolutionary relationship of A to Au than to Am. The structure conservation in the repetitive regions promoted us to develop repeat junction markers based on the Au sequence for mapping the A genome in hexaploid wheat. Eighty percent of these repeat junction markers were successfully mapped to the corresponding region in hexaploid wheat, suggesting that T. urartu could serve as a useful resource for developing molecular markers for genetic and breeding studies in hexaploid wheat.  相似文献   

13.
Over the past few years, considerable progress has been made in high-throughput single nucleotide polymorphism (SNP) genotyping technologies, largely through the investment of the human genetics community. These technologies are well adapted to diploid species. For plant breeding purposes, it is important to determine whether these genotyping methods are adapted to polyploidy, as most major crops are former or recent polyploids. To address this problem, we tested the capacity of the multiplex technology SNPlex™ with a set of 47 wheat SNPs to genotype DNAs of 1314 lines that were organized in four 384-well plates. These lines represented different taxa of tetra- and hexaploid Triticum species and their wild diploid relatives. We observed 40 markers which gave less than 20% missing data. Different methods, based on either Sanger sequencing or the MassARRAY® genotyping technology, were then used to validate the genotypes obtained by SNPlex™ for 11 markers. The concordance of the genotypes obtained by SNPlex™ with the results obtained by the different validation methods was 96%, except for one discarded marker. Furthermore, a mapping study on six markers showed the expected genetic positions previously described. To conclude, this study showed that high-throughput genotyping technologies developed for diploid species can be used successfully in polyploids, although there is a need for manual reading. For the first time in wheat species, a core of 39 SNPs is available that can serve as the basis for the development of a complete SNPlex™ set of 48 markers.  相似文献   

14.
Bread wheat (Triticum aestivum) is one of the most important crops worldwide. However, because of its large, hexaploid, highly repetitive genome it is a challenge to develop efficient means for molecular analysis and genetic improvement in wheat. To better understand the composition and molecular evolution of the hexaploid wheat homoeologous genomes and to evaluate the potential of BAC-end sequences (BES) for marker development, we have followed a chromosome-specific strategy and generated 11 Mb of random BES from chromosome 3B, the largest chromosome of bread wheat. The sequence consisted of about 86% of repetitive elements, 1.2% of coding regions, and 13% remained unknown. With 1.2% of the sequence length corresponding to coding sequences, 6000 genes were estimated for chromosome 3B. New repetitive sequences were identified, including a Triticineae-specific tandem repeat (Fat) that represents 0.6% of the B-genome and has been differentially amplified in the homoeologous genomes before polyploidization. About 10% of the BES contained junctions between nested transposable elements that were used to develop chromosome-specific markers for physical and genetic mapping. Finally, sequence comparison with 2.9 Mb of random sequences from the D-genome of Aegilops tauschii suggested that the larger size of the B-genome is due to a higher content in repetitive elements. It also indicated which families of transposable elements are mostly responsible for differential expansion of the homoeologous wheat genomes during evolution. Our data demonstrate that BAC-end sequencing from flow-sorted chromosomes is a powerful tool for analysing the structure and evolution of polyploid and highly repetitive genomes.  相似文献   

15.
An integrated DArT-SSR linkage map of durum wheat   总被引:2,自引:0,他引:2  
Genetic mapping in durum wheat (Triticum durum Desf.) is constrained by its large genome and allopolyploid nature. We developed a Diversity Arrays Technology (DArT) platform for durum wheat to enable efficient and cost-effective mapping and molecular breeding applications. Genomic representations from 56 durum accessions were used to assemble a DArT genotyping microarray. Microsatellite (SSR) and DArT markers were mapped on a durum wheat recombinant inbred population (176 lines). The integrated DArT-SSR map included 554 loci (162 SSRs and 392 DArT markers) and spanned 2022 cM (5 cM/marker on average). The DArT markers from durum wheat were positioned in respect to anchor SSRs and hexaploid wheat DArT markers. DArT markers compared favourably to SSRs to evaluate genetic relationships among the durum panel, with 1315 DArT polymorphisms found across the accessions. Combining DArT and SSR platforms provides an efficient and rapid method of generating linkage maps in durum wheat.  相似文献   

16.
For future food security, it is important that wheat, one of the most widely consumed crops in the world, can survive the threat of abiotic and biotic stresses. New genetic variation is currently being introduced into wheat through introgressions from its wild relatives. For trait discovery, it is necessary that each introgression is homozygous and hence stable. Breeding programmes rely on efficient genotyping platforms for marker‐assisted selection (MAS). Recently, single nucleotide polymorphism (SNP)‐based markers have been made available on high‐throughput Axiom® SNP genotyping arrays. However, these arrays are inflexible in their design and sample numbers, making their use unsuitable for long‐term MAS. SNPs can potentially be converted into Kompetitive allele‐specific PCR (KASP?) assays that are comparatively cost‐effective and efficient for low‐density genotyping of introgression lines. However, due to the polyploid nature of wheat, KASP assays for homoeologous SNPs can have difficulty in distinguishing between heterozygous and homozygous hybrid lines in a backcross population. To identify co‐dominant SNPs, that can differentiate between heterozygotes and homozygotes, we PCR‐amplified and sequenced genomic DNA from potential single‐copy regions of the wheat genome and compared them to orthologous copies from different wild relatives. A panel of 620 chromosome‐specific KASP assays have been developed that allow rapid detection of wild relative segments and provide information on their homozygosity and site of introgression in the wheat genome. A set of 90 chromosome‐nonspecific assays was also produced that can be used for genotyping introgression lines. These multipurpose KASP assays represent a powerful tool for wheat breeders worldwide.  相似文献   

17.
Allopolyploidy alters gene expression in the highly stable hexaploid wheat   总被引:32,自引:0,他引:32  
Hexaploid wheat (Triticum aestivum) contains triplicated genomes derived from three distinct species. To better understand how different genomes are coordinated in the same nucleus of the hexaploid wheat, we globally compared gene expression of a synthetic hexaploid wheat with its diploid (Aegilops tauschii) and tetraploid (T. turgidum) parents by cDNA-AFLP display. The results suggested that the expression of a significant fraction of genes was altered in the synthetic hexaploid; most appeared to be diminished and some were activated. We characterized nine cDNA clones in details. Cytogenetic as well as genomic sequence analyses indicated that the gene silencing was not due to chromosome/DNA loss but was caused by gene regulation. Northern and RT-PCR divided these genes into three groups: (I) four genes were down-regulated nonspecifically, likely involving both parental orthologues; (II) four genes were down-regulated in an orthologue-dependent manner; (III) one gene was activated specifically in the synthetic hexaploid wheat. These genes were often altered non-randomly in different synthetic hexaploids as well as natural hexaploid wheat, suggesting that many of the gene expression changes were intrinsically associated with polyploidy.  相似文献   

18.
The transfer of genes between Triticum aestivum (hexaploid bread wheat) and T. turgidum (tetraploid durum wheat) holds considerable potential for genetic improvement of both these closely related species. Five different T. aestivum/T. turgidum ssp. durum crosses were investigated using Diversity Arrays Technology (DArT) markers to determine the inheritance of parental A, B and D genome material in subsequent generations derived from these crosses. The proportions of A, B and D chromosomal segments inherited from the hexaploid parent were found to vary significantly among individual crosses. F(2) populations retained widely varying quantities of D genome material, ranging from 99% to none. The relative inheritance of bread wheat and durum alleles in the A and B genomes of derived lines also varied among the crosses. Within any one cross, progeny without D chromosomes in general had significantly more A and B genome durum alleles than lines retaining D chromosomes. The ability to select for and manipulate this non-random segregation in bread wheat/durum crosses will assist in efficient backcrossing of selected characters into the recurrent durum or hexaploid genotype of choice. This study illustrates the utility of DArT markers in the study of inter-specific crosses to commercial crop species.  相似文献   

19.
吴迪  郑彤  李磊  李韬 《生物技术进展》2020,10(3):242-250
赤霉病是小麦主要的流行病害之一。借助标记辅助选择将不同数量性状基因座(quantitative trait loci,QTL)聚合是防治赤霉病有效且环保的方法,可以从源头上控制赤霉病并降低籽粒中毒素含量。抗赤霉病QTL在小麦全基因组均有分布,但除了Fhb1、Fhb2等少数位点有比较可靠的鉴别标记,绝大部分位点缺乏有效的位点特异性鉴别标记。简单重复序列(simple sequence repeat,SSR)标记多态性丰富,可以区分自然群体中不同等位变异,方便用于标记辅助育种。基于此,搜集了不同文献中报道的与赤霉病关联的SSR标记386个,并用这些标记构建全基因组赤霉病抗性QTL一致性图谱,接着对这些关联标记进行拷贝数分析,进而选择位点内的单拷贝SSR标记,将这些单拷贝标记在156个品种组成的自然群体中进行扩增,并与三季大田和三季温室环境下赤霉病抗性进行关联,筛选与赤霉病抗性关联的单拷贝SSR标记,明确这些标记在自然群体中的有效等位变异和效应。结果表明,共8个单拷贝SSR标记至少在两季试验中与表型显著关联(P<0.05),涉及2B、2D、3B、5A、5B、6A、6D、7A染色体,有5个单拷贝标记位点存在有效等位变异。中国地方品种和日本品种携带更多的有利变异,且有利等位变异数目越多的品种赤霉病抗性越好。研究分析的QTL位点及其关联的单拷贝SSR标记可用于赤霉病抗病育种,有利于提高品种赤霉病抗性水平和育种效率。  相似文献   

20.
High‐density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker–trait associations in mapping experiments. We developed a genotyping array including about 90 000 gene‐associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome‐wide distributed SNPs that are represented in populations of diverse geographical origin. We used density‐based spatial clustering algorithms to enable high‐throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model‐free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low‐intensity clusters can provide insight into the distribution of presence–absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号