首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The demand for crops requiring increasingly complex combinations of transgenes poses unique challenges for transgenic trait deployment. Future value‐adding traits such as those associated with crop performance are expected to involve multiple transgenes. Random integration of transgenes not only results in unpredictable expression and potential unwanted side effects but stacking multiple, randomly integrated, independently segregating transgenes creates breeding challenges during introgression and product development. Designed nucleases enable the creation of targeted DNA double‐strand breaks at specified genomic locations whereby repair can result in targeted transgene integration leading to precise alterations in DNA sequences for plant genome editing, including the targeting of a transgene to a genomic locus that supports high‐level and stable transgene expression without interfering with resident gene function. In addition, targeted DNA integration via designed nucleases allows for the addition of transgenes into previously integrated transgenic loci to create stacked products. The currently reported frequencies of independently generated transgenic events obtained with site‐specific transgene integration without the aid of selection for targeting are very low. A modular, positive selection‐based gene targeting strategy has been developed involving cassette exchange of selectable marker genes which allows for targeted events to be preferentially selected, over multiple cycles of sequential transformation. This, combined with the demonstration of intragenomic recombination following crossing of transgenic events that contain stably integrated donor and target DNA constructs with nuclease‐expressing plants, points towards the future of trait stacking that is less dependent on high‐efficiency transformation.  相似文献   

2.
Efficient methods of stacking genes into plant genomes are needed to expedite transfer of multigenic traits to crop varieties of diverse ecosystems. Over two decades of research has identified several DNA recombinases that carryout efficient cis and trans recombination between the recombination sites artificially introduced into the plant chromosome. The specificity and efficiency of recombinases make them extremely attractive for genome engineering. In plant biotechnology, recombinases have mostly been used for removing selectable marker genes and have rarely been extended to more complex applications. The reversibility of recombination, a property of the tyrosine family of recombinases, does not lend itself to gene stacking approaches that involve rounds of transformation for integrating genes into the engineered sites. However, recent developments in the field of recombinases have overcome these challenges and paved the way for gene stacking. Some of the key advancements include the application of unidirectional recombination systems, modification of recombination sites and transgene site modifications to allow repeated site‐specific integrations into the selected site. Gene stacking is relevant to agriculturally important crops, many of which are difficult to transform; therefore, development of high‐efficiency gene stacking systems will be important for its application on agronomically important crops, and their elite varieties. Recombinases, by virtue of their specificity and efficiency in plant cells, emerge as powerful tools for a variety of applications including gene stacking.  相似文献   

3.
To improve site?specific integration technology system, site?specific integration of Rps2 target gene in Arabidopsis thaliana (Linn.) Heynh. was carried out based on Cre/lox system by floral spraying method. The results show that 1495 site?specific integration candidate plants are obtained by this method with a site?specific integration efficiency of about 0076%. After PCR and histochemical staining experiment verification, the positive plants of precise integration account for 8604%, in which, 6334% positive plants are single copy transformed plants. The results of quantitative real?time PCR (qRT?PCR) and hypersensitive reaction (HR) show that the site?specific integrated Rps2 gene can be transcribed and expressed normally. It is suggested that this system can greatly improve the stability and efficiency of site?specific integration genetic transformation system in plants.  相似文献   

4.
Previously, we showed that ZFN‐mediated induction of double‐strand breaks (DSBs) at the intended recombination site enhanced the frequency of gene targeting (GT) at an artificial target locus using Agrobacterium‐mediated floral dip transformation. Here, we designed zinc finger nucleases (ZFNs) for induction of DSBs in the natural protoporphyrinogen oxidase (PPO) gene, which can be conveniently utilized for GT experiments. Wild‐type Arabidopsis plants and plants expressing the ZFNs were transformed via floral dip transformation with a repair T‐DNA with an incomplete PPO gene, missing the 5′ coding region but containing two mutations rendering the enzyme insensitive to the herbicide butafenacil as well as an extra KpnI site for molecular analysis of GT events. Selection on butafenacil yielded 2 GT events for the wild type with a frequency of 0.8 × 10?3 per transformation event and 8 GT events for the ZFNs expressing plant line with a frequency of 3.1 × 10?3 per transformation event. Molecular analysis using PCR and Southern blot analysis showed that 9 of the GT events were so‐called true GT events, repaired via homologous recombination (HR) at the 5′ and the 3′ end of the gene. One plant line contained a PPO gene repaired only at the 5′ end via HR. Most plant lines contained extra randomly integrated T‐DNA copies. Two plant lines did not contain extra T‐DNAs, and the repaired PPO genes in these lines were transmitted to the next generation in a Mendelian fashion.  相似文献   

5.
Molecular stacking enables multiple traits to be effectively engineered in crops using a single vector. However, the co‐existence of distinct plant promoters in the same transgenic unit might, like their mammalian counterparts, interfere with one another. In this study, we devised a novel approach to investigate enhancer–promoter and promoter–promoter interactions in transgenic plants and demonstrated that three of four flower‐specific enhancer/promoters were capable of distantly activating a pollen‐ and stigma‐specific Pps promoter (fused to the cytotoxic DT‐A gene) in other tissues, as revealed by novel tissue ablation phenotypes in transgenic plants. The NtAGI1 enhancer exclusively activated stamen‐ and carpel‐specific DT‐A expression, thus resulting in tissue ablation in an orientation‐independent manner; this activation was completely abolished by the insertion of an enhancer‐blocking insulator (EXOB) between the NtAGI1 enhancer and Pps promoter. Similarly, AGL8 and AP1Lb1, but not AP1La, promoters also activated distinct tissue‐specific DT‐A expression and ablation, with the former causing global growth retardation and the latter ablating apical inflorescences. While the tissue specificity of the enhancer/promoters generally defined their activation specificities, the strength of their activity in particular tissues or developmental stages appeared to determine whether activation actually occurred. Our findings provide the first evidence that plant‐derived enhancer/promoters can distantly interact/interfere with one another, which could pose potential problems for the tissue‐specific engineering of multiple traits using a single‐vector stacking approach. Therefore, our work highlights the importance of adopting enhancer‐blocking insulators in transformation vectors to minimize promoter–promoter interactions. The practical and fundamental significance of these findings will be discussed.  相似文献   

6.
Lipase maturation factor (LMF) family proteins are required for the maturation and transport of active lipoprotein lipases. However, the specific roles of LMF2 remain unknown. In this study, a grain aphid lmf2‐like gene fragment was cloned and was highly similar in sequence to a homologous gene in the pea aphid, Acyrthosiphon pisum. An RNAi vector was constructed with this fragment and used for wheat transformation. The expression of the lmf2‐like gene in aphid, as well as the growth and reproduction of the aphids, was analyzed after feeding on the transgenic wheat. There were no significant differences in the expression of the lmf2‐like gene over development. The expression of the lmf2‐like gene was significantly reduced by 27.6% on the fifth day, and 57.6% on the 10th day after feeding. The total number of aphids produced on the transgenic plants was less than the number produced on control plants, and the difference became significant or after 2 weeks. The molting numbers were also reduced in the aphids reared on the transgenic plants. Our findings indicate that lmf2‐like genes may have potential as a target gene for the control of grain aphids and show that feeding aphids with wheat expressing lmf2‐like RNAi resulted in significant reductions in survival and reproduction.  相似文献   

7.
8.
Chimeric soybean plants derived from electric discharge particle acceleration experiments were used to develop relationships between tissue-specific expression patterns of a marker gene and germ-line transformation events in Ro plants. Using the GUS histochemical assay the likelihood of germ-line transformation was correlated to the localization of enzyme activity in specific tissues of the parent plant. The expression patterns of the 35S-GUS marker gene in specific tissue types in Ro plants and correlation with transmission of the introduced gene to progeny allowed the production of a clear picture of the development of these plants and their germ-line cells. Advances reported in this article resulted in the development of a commercial process for the genetic improvement of this important staple crop which until recently was very recalcitrant to conventional transformation methods.  相似文献   

9.
Gossypium hirsutum is an allotetraploid with a complex genome. Most genes have multiple copies that belong to At and Dt subgenomes. Sequence similarity is also very high between gene homologues. To efficiently achieve site/gene‐specific mutation is quite needed. Due to its high efficiency and robustness, the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system has exerted broad site‐specific genome editing from prokaryotes to eukaryotes. In this study, we utilized a CRISPR/Cas9 system to generate two sgRNAs in a single vector to conduct multiple sites genome editing in allotetraploid cotton. An exogenously transformed gene Discosoma red fluorescent protein2(DsRed2) and an endogenous gene GhCLA1 were chosen as targets. The DsRed2‐edited plants in T0 generation reverted its traits to wild type, with vanished red fluorescence the whole plants. Besides, the mutated phenotype and genotype were inherited to their T1 progenies. For the endogenous gene GhCLA1, 75% of regenerated plants exhibited albino phenotype with obvious nucleotides and DNA fragments deletion. The efficiency of gene editing at each target site is 66.7–100%. The mutation genotype was checked for both genes with Sanger sequencing. Barcode‐based high‐throughput sequencing, which could be highly efficient for genotyping to a population of mutants, was conducted in GhCLA1‐edited T0 plants and it matched well with Sanger sequencing results. No off‐target editing was detected at the potential off‐target sites. These results prove that the CRISPR/Cas9 system is highly efficient and reliable for allotetraploid cotton genome editing.  相似文献   

10.
Successful manipulation of the plastid genome (ptDNA) has been carried out so far only in tissue-culture cells, a limitation that prevents plastid transformation being applied in major agronomic crops. Our objective is to develop a tissue-culture independent protocol that enables manipulation of plastid genomes directly in plants to yield genetically stable seed progeny. We report that in planta excision of a plastid aurea bar gene (bar(au) ) is detectable in greenhouse-grown plants by restoration of the green pigmentation in tobacco leaves. The P1 phage Cre or PhiC31 phage Int site-specific recombinase was delivered on the Agrobacterium T-DNA injected at the axillary bud site, resulting in the excision of the target-site flanked marker gene. Differentiation of new apical meristems was forced by decapitating the plants above the injection site. The new shoot apex that differentiated at the injection site contained bar(au)-free plastids in 30-40% of the injected plants, of which 7% transmitted the bar(au)-free plastids to the seed progeny. The success of obtaining seed with bar(au)-free plastids depended on repeatedly forcing shoot development from axillary buds, a process that was guided by the size and position of green sectors in the leaves. The success of in planta plastid marker excision proved that manipulation of the plastid genomes is feasible within an intact plant. Extension of the protocol to in planta plastid transformation depends on the development of new protocols for the delivery of transforming DNA encoding visual markers.  相似文献   

11.
The encroachment of woody plants into grasslands, woodland, and savanna has increased markedly over the past century, prompting the use of different physical methods to remove woody plants and restore grasses. Roller‐chopping is used extensively in the Americas, but little is known about its long‐term effectiveness for restoration, and whether its effectiveness varies with the intensity of encroachment. We compared the effects of roller‐chopping, under three treatment intensities (control, single treatment, double treatment), on woody plant density, ground cover, and groundstorey plants at sites of low, moderate, and high woody plant density in a semi‐arid eastern Australian woodland over 10 years. Both single and double treatment significantly altered the size distribution of Dodonaea viscosa, which comprised more than 85% of woody plants at all sites. Thus, roller‐chopping changed the size distribution of the community from an even‐size distribution to one dominated by shorter plants, irrespective of initial encroachment level. The effectiveness of roller‐chopping was strongly site‐specific, with significant reductions in density at low‐ and high‐density sites, but no clear trend in relation to the intensity of treatment (i.e. single cf. double treatment). The effectiveness of roller‐chopping was unsustained over the long term, with the suppressive effect on woody density diminishing over time. Grass cover increased with increasing intensity of woody removal, but only at the low‐density site and with some ill‐defined, variable, and short‐term effects on plant composition. Managers should consider that the short‐term effects may not adequately reflect the long‐term results of woody plant removal using the roller‐chopper.  相似文献   

12.
Trait stacking via targeted genome editing   总被引:1,自引:0,他引:1  
Modern agriculture demands crops carrying multiple traits. The current paradigm of randomly integrating and sorting independently segregating transgenes creates severe downstream breeding challenges. A versatile, generally applicable solution is hereby provided: the combination of high‐efficiency targeted genome editing driven by engineered zinc finger nucleases (ZFNs) with modular ‘trait landing pads’ (TLPs) that allow ‘mix‐and‐match’, on‐demand transgene integration and trait stacking in crop plants. We illustrate the utility of nuclease‐driven TLP technology by applying it to the stacking of herbicide resistance traits. We first integrated into the maize genome an herbicide resistance gene, pat, flanked with a TLP (ZFN target sites and sequences homologous to incoming DNA) using WHISKERS?‐mediated transformation of embryogenic suspension cultures. We established a method for targeted transgene integration based on microparticle bombardment of immature embryos and used it to deliver a second trait precisely into the TLP via cotransformation with a donor DNA containing a second herbicide resistance gene, aad1, flanked by sequences homologous to the integrated TLP along with a corresponding ZFN expression construct. Remarkably, up to 5% of the embryo‐derived transgenic events integrated the aad1 transgene precisely at the TLP, that is, directly adjacent to the pat transgene. Importantly and consistent with the juxtaposition achieved via nuclease‐driven TLP technology, both herbicide resistance traits cosegregated in subsequent generations, thereby demonstrating linkage of the two independently transformed transgenes. Because ZFN‐mediated targeted transgene integration is becoming applicable across an increasing number of crop species, this work exemplifies a simple, facile and rapid approach to trait stacking.  相似文献   

13.
The selectable marker gene phospho-mannose isomerase (pmi), which encodes the enzyme phospho-mannose isomerase (PMI) to enable selection of transformed cell lines on media containing mannose (Man), was evaluated for genetic transformation of papaya (Carica papaya L.). We found that papaya embryogenic calli have little or no PMI activity and cannot utilize Man as a carbon source; however, when calli were transformed with a pmi gene, the PMI activity was greatly increased and they could utilize Man as efficiently as sucrose. Plants regenerated from selected callus lines also exhibited PMI activity but at a lower specific activity level. Our transformation efficiency with Man selection was higher than that reported using antibiotic selection or with a visual marker. For papaya, the PMI/Man selection system for producing transgenic plants is a highly efficient addition to previously published methods for selection and may facilitate the stacking of multiple transgenes of interest. Additionally, since the PMI/Man selection system does not involve antibiotic or herbicide resistance genes, its use might reduce environmental concerns about the potential flow of those genes into related plant populations.  相似文献   

14.
Pollen‐mediated gene flow is a major driver of spatial genetic structure in plant populations. Both individual plant characteristics and site‐specific features of the landscape can modify the perceived attractiveness of plants to their pollinators and thus play an important role in shaping spatial genetic variation. Most studies of landscape‐level genetic connectivity in plants have focused on the effects of interindividual distance using spatial and increasingly ecological separation, yet have not incorporated individual plant characteristics or other at‐site ecological variables. Using spatially explicit simulations, we first tested the extent to which the inclusion of at‐site variables influencing local pollination success improved the statistical characterization of genetic connectivity based upon examination of pollen pool genetic structure. The addition of at‐site characteristics provided better models than those that only considered interindividual spatial distance (e.g. IBD). Models parameterized using conditional genetic covariance (e.g. population graphs) also outperformed those assuming panmixia. In a natural population of Cornus florida L. (Cornaceae), we showed that the addition of at‐site characteristics (clumping of primary canopy opening above each maternal tree and maternal tree floral output) provided significantly better models describing gene flow than models including only between‐site spatial (IBD) and ecological (isolation by resistance) variables. Overall, our results show that including interindividual and local ecological variation greatly aids in characterizing landscape‐level measures of contemporary gene flow.  相似文献   

15.
Genotype specificity is a big problem lagging the development of efficient hexaploid wheat transformation system. Increasingly, the biosecurity of genetically modified organisms is garnering public attention, so the generation of marker‐free transgenic plants is very important to the eventual potential commercial release of transgenic wheat. In this study, 15 commercial Chinese hexaploid wheat varieties were successfully transformed via an Agrobacterium‐mediated method, with efficiency of up to 37.7%, as confirmed by the use of Quickstix strips, histochemical staining, PCR analysis and Southern blotting. Of particular interest, marker‐free transgenic wheat plants from various commercial Chinese varieties and their F1 hybrids were successfully obtained for the first time, with a frequency of 4.3%, using a plasmid harbouring two independent T‐DNA regions. The average co‐integration frequency of the gus and the bar genes located on the two independent T‐DNA regions was 49.0% in T0 plants. We further found that the efficiency of generating marker‐free plants was related to the number of bar gene copies integrated in the genome. Marker‐free transgenic wheat plants were identified in the progeny of three transgenic lines that had only one or two bar gene copies. Moreover, silencing of the bar gene was detected in 30.7% of T1 positive plants, but the gus gene was never found to be silenced in T1 plants. Bisulphite genomic sequencing suggested that DNA methylation in the 35S promoter of the bar gene regulatory region might be the main reason for bar gene silencing in the transgenic plants.  相似文献   

16.
Random T–DNA integration into the plant host genome can be problematic for a variety of reasons, including potentially variable transgene expression as a result of different integration positions and multiple T–DNA copies, the risk of mutating the host genome and the difficulty of stacking well‐defined traits. Therefore, recombination systems have been proposed to integrate the T–DNA at a pre‐selected site in the host genome. Here, we demonstrate the capacity of the ?C31 integrase (INT) for efficient targeted T–DNA integration. Moreover, we show that the iterative site‐specific integration system (ISSI), which combines the activities of the CRE recombinase and INT, enables the targeting of genes to a pre‐selected site with the concomitant removal of the resident selectable marker. To begin, plants expressing both the CRE and INT recombinase and containing the target attP site were constructed. These plants were supertransformed with a T–DNA vector harboring the loxP site, the attB sites, a selectable marker and an expression cassette encoding a reporter protein. Three out of the 35 transformants obtained (9%) showed transgenerational site‐specific integration (SSI) of this T–DNA and removal of the resident selectable marker, as demonstrated by PCR, Southern blot and segregation analysis. In conclusion, our results show the applicability of the ISSI system for precise and targeted Agrobacterium‐mediated integration, allowing the serial integration of transgenic DNA sequences in plants.  相似文献   

17.
18.
In recent years, the type II CRISPR system has become a widely used and robust technique to implement site‐directed mutagenesis in a variety of species including model and crop plants. However, few studies manipulated metabolic pathways in plants using the CRISPR system. Here, we introduced the pYLCRISPR/Cas9 system with one or two single‐site guide RNAs to target the tomato phytoene desaturase gene. An obvious albino phenotype was observed in T0 regenerated plants, and more than 61% of the desired target sites were edited. Furthermore, we manipulated the γ‐aminobutyric acid (GABA) shunt in tomatoes using a multiplex pYLCRISPR/Cas9 system that targeted five key genes. Fifty‐three genome‐edited plants were obtained following single plant transformation, and these samples represented single to quadruple mutants. The GABA accumulation in both the leaves and fruits of genomically edited lines was significantly enhanced, and the GABA content in the leaves of quadruple mutants was 19‐fold higher than that in wild‐type plants. Our data demonstrate that the multiplex CRISPR/Cas9 system can be exploited to precisely edit tomato genomic sequences and effectively create multisite knockout mutations, which could shed new light on plant metabolic engineering regulations.  相似文献   

19.
Biotechnology provides a means for the rapid genetic improvement of plants. Although single genes have been important in engineering herbicide and pest tolerance traits in crops, future improvements of complex traits like yield and nutritional quality will likely require the introduction of multiple genes. This research reports a system (GAANTRY; Gene Assembly in Agrobacterium by Nucleic acid Transfer using Recombinase technologY) for the flexible, in vivo stacking of multiple genes within an Agrobacterium virulence plasmid Transfer‐DNA (T‐DNA). The GAANTRY system utilizes in vivo transient expression of unidirectional site‐specific recombinases and an alternating selection scheme to sequentially assemble multiple genes into a single transformation construct. To demonstrate GAANTRY's capabilities, 10 cargo sequences were sequentially stacked together to produce a 28.5‐kbp T‐DNA, which was used to generate hundreds of transgenic events. Approximately 90% of the events identified using a dual antibiotic selection screen exhibited all of the introduced traits. A total of 68% of the tested lines carried a single copy of the selection marker transgene located near the T‐DNA left border, and only 8% contained sequence from outside the T‐DNA. The GAANTRY system can be modified to easily accommodate any method of DNA assembly and generate high‐quality transgenic plants, making it a powerful, yet simple to use tool for plant genetic engineering.  相似文献   

20.
We have previously described a recombinase‐mediated gene stacking system in which the Cre recombinase is used to remove lox‐site flanked DNA no longer needed after each round of Bxb1 integrase‐mediated site‐specific integration. The Cre recombinase can be conveniently introduced by hybridization with a cre‐expressing plant. However, maintaining an efficient cre‐expressing line over many generations can be a problem, as high production of this DNA‐binding protein might interfere with normal chromosome activities. To counter this selection against high Cre activity, we considered a split‐cre approach, in which Cre activity is reconstituted after separate parts of Cre are brought into the same genome by hybridization. To insure that the recombinase‐mediated gene stacking system retains its freedom to operate, we tested for new locations to split Cre into complementing fragments. In this study, we describe testing four new locations for splitting the Cre recombinase for protein fragment complementation and show that the two fragments of Cre split between Lys244 and Asn245 can reconstitute activity that is comparable to that of wild‐type Cre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号