首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Engineering the production of polyhydroxyalkanoates (PHAs) into high biomass bioenergy crops has the potential to provide a sustainable supply of bioplastics and energy from a single plant feedstock. One of the major challenges in engineering C4 plants for the production of poly[(R)‐3‐hydroxybutyrate] (PHB) is the significantly lower level of polymer produced in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells, thereby limiting the full PHB yield‐potential of the plant. In this study, we provide evidence that the access to substrate for PHB synthesis may limit polymer production in M chloroplasts. Production of PHB in M cells of sugarcane is significantly increased by replacing β‐ketothiolase, the first enzyme in the bacterial PHA pathway, with acetoacetyl‐CoA synthase. This novel pathway enabled the production of PHB reaching an average of 6.3% of the dry weight of total leaf biomass, with levels ranging from 3.6 to 11.8% of the dry weight (DW) of individual leaves. These yields are more than twice the level reported in PHB‐producing sugarcane containing the β‐ketothiolase and illustrate the importance of producing polymer in mesophyll plastids to maximize yield. The molecular weight of the polymer produced was greater than 2 × 106 Da. These results are a major step forward in engineering a high biomass C4 grass for the commercial production of PHB.  相似文献   

2.
3-Phosphoglycerate phosphatase and phosphoglycolate phosphatase were found in leaves of all 52 plants examined. Activities of both phosphatases varied widely between 1 to 20 micromoles per minute per milligram chlorophyll. Plants were grouped into two categories based upon the relative ratio of activity of 3-phosphoglycerate phosphatase to phosphoglycolate phosphatase. This ratio varied between 2:1 to 4:1 in the C4-plants except corn leaves which had a low level of 3-phosphoglycerate phosphatase. This ratio was reversed and varied between 1:2 to 1:6 in all C3-plants except one bean variety which had large amounts of both phosphatases. By differential grinding procedures for C4 plants a major part of the 3-phosphoglycerate phosphatase was found in the mesophyll cells and P-glycolate phosphatase in the bundle sheath cells. Phosphoglycolate phosphatase, but not 3-phosphoglycerate phosphatase, was located in chloroplasts of C3- and C4- plants. Formation of 3-phosphoglycerate phosphatase increased 4- to 12-fold during greening of etiolated sugarcane leaves. This cytosol phosphatase displayed a diurnal variation in sugarcane leaves by increasing 50% during late daylight hours and early evening. It is proposed that the soluble form of 3-phosphoglycerate phosphatase is necessary for carbon transport between the bundle sheath and mesophyll cells during photosynthesis by C4-plants. In C3- and C4-plants this phosphatase initiates the conversion of 3-phosphoglycerate to serine which is an alternate metabolic pathway to glycolate metabolism and photorespiration.  相似文献   

3.
A computer model comprising light reactions in PS II and PS I, electron-proton transport reactions in mesophyll and bundle sheath chloroplasts, all enzymatic reactions and most of the known regulatory functions of NADP-ME type C4 photosynthesis has been developed as a system of differential budget equations for intermediate compounds. Rate-equations were designed on principles of multisubstrate-multiproduct enzyme kinetics. Some of the 275 constants needed (ΔG0′ and K m values) were available from literature and others (V m) were estimated from reported rates and pool sizes. The model provided good simulations for rates of photosynthesis and pool sizes of intermediates under varying light, CO2 and O2. A basic novelty of the model is coupling of NADPH production via NADP-ME with ATP production and regulation of the C3 cycle in bundle sheath chloroplasts. The functional range of the ATP/NADPH ratio in bundle sheath chloroplasts extends from 1.5 to 2.1, being energetically most efficient around 2. In the presence of such stoichiometry, the CO2 concentrating function can be explained on the basis of two processes: (a) extra ATP consumption for starch and protein synthesis in bundle sheath leads to a faster NADPH and CO2 import compared with CO2 fixation in bundle sheath, and (b) the residual photorespiratory activity consumes RuBP by oxygenation, NADPH and ATP and causes the imported CO2 to accumulate in bundle sheath cells. As a wider application, the model may be used for predicting results of genetic engineering of plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
The evolution of C4 photosynthesis proceeded stepwise with each small step increasing the fitness of the plant. An important pre‐condition for the introduction of a functional C4 cycle is the photosynthetic activation of the C3 bundle sheath by increasing its volume and organelle number. Therefore, to engineer C4 photosynthesis into existing C3 crops, information about genes that control the bundle sheath cell size and organelle content is needed. However, very little information is known about the genes that could be manipulated to create a more C4–like bundle sheath. To this end, an ethylmethanesulfonate (EMS)‐based forward genetic screen was established in the Brassicaceae Cspecies Arabidopsis thaliana. To ensure a high‐throughput primary screen, the bundle sheath cells of A. thaliana were labeled using a luciferase (LUC68) or by a chloroplast‐targeted green fluorescent protein (sGFP) reporter using a bundle sheath specific promoter. The signal strengths of the reporter genes were used as a proxy to search for mutants with altered bundle sheath anatomy. Here, we show that our genetic screen predominantly identified mutants that were primarily affected in the architecture of the vascular bundle, and led to an increase in bundle sheath volume. By using a mapping‐by‐sequencing approach the genomic segments that contained mutated candidate genes were identified.  相似文献   

5.
A theoretical model of the composition of the inorganic carbon pool generated in C4 leaves during steady-state photosynthesis was derived. This model gives the concentrations of CO2 and O2 in the bundle sheath cells for any given net photosynthesis rate and inorganic carbon pool size. The model predicts a bundle sheath CO2 concentration of 70 micromolar during steady state photosynthesis in a typical C4 plant, and that about 13% of the inorganic carbon generated in bundle sheath cells would leak back to the mesophyll cells, predominantly as CO2. Under these circumstances the flux of carbon through the C4 acid cycle would have to exceed the net rate of CO2 assimilation by 15.5%. With the calculated O2 concentration of 0.44 millimolar, the potential photorespiratory CO2 loss in bundle sheath cells would be about 3% of CO2 assimilation. Among the factors having a critical influence on the above values are the permeability of bundle sheath chloroplasts to HCO3, the activity of carbonic anhydrase within these chloroplasts, the assumed stromal volume, and the permeability coefficients for CO2 and O2 diffusion across the interface between bundle sheath and mesophyll cells. The model suggests that as the net photosynthesis rate changes in C4 plants, the level and distribution of the components of the inorganic carbon pool change in such a way that C4 acid overcycling is maintained in an approximately constant ratio with respect to the net photosynthesis rate.  相似文献   

6.
The activity of ATP sulfurylase, cysteine synthase, and cystathionine β-lyase was measured in crude leaf extracts, bundle sheath strands, and mesophyll and bundle sheath chloroplasts to determine the location of sulfate assimilation of C4 plant leaves. Almost all the ATP sulfurylase activity was located in the bundle sheath chloroplasts while cysteine synthase and cystathionine β-lyase activity was located, in different proportions, in both chloroplast types.

A new spectrophotometric assay for measuring ATP sulfurylase activity is also described.

  相似文献   

7.
Mesophyll and bundle sheath chloroplasts were isolated by differential grinding from the leaves of two NADP-ME C4 plants, Setaria italica Beauv. cv. H-1, Pennisetum typhoides S & H. cv. AKP-2, and a NAD-ME C4 species Amaranthus paniculatus L. The mesophyll chloroplasts of C4 plants possessed slightly lower Km for ADP and Pi than those of bundle sheath chloroplasts. The Hill reaction activities and noncyclic photophosphorylation rates of the bundle sheath chloropiasts from S. italica and P. typhoides were less than one-fifth of those by the mesophyll chloroplasts. But the bundle sheath chloroplasts of A. paniculatus exhibited high rates of Hill reaction, cyclic as well as noncyclic photophosphorylation. The pigment- and eyiochrome composition suggested a relative enrichment of PS 1 in bundle sheath chloroplasts of S. italica and P. typhoides. The chain exists in both mesophyll and bundle sheath chloroplasts. As much as 35–52% of leaf chlorophyll was located in the bundle sheath chloroplasts. The photochemical activities of bundle sheath chloroplasts are significant though a major part of leaf photochemical potential is associated with the mesophyll chloroplasts.  相似文献   

8.
Attempts are being made to introduce C4 photosynthetic characteristics into C3 crop plants by genetic manipulation. This research has focused on engineering single‐celled C4‐type CO2 concentrating mechanisms into C3 plants such as rice. Herein the pros and cons of such approaches are discussed with a focus on CO2 diffusion, utilizing a mathematical model of single‐cell C4 photosynthesis. It is shown that a high bundle sheath resistance to CO2 diffusion is an essential feature of energy‐efficient C4 photosynthesis. The large chloroplast surface area appressed to the intercellular airspace in C3 leaves generates low internal resistance to CO2 diffusion, thereby limiting the energy efficiency of a single‐cell C4 concentrating mechanism, which relies on concentrating CO2 within chloroplasts of C3 leaves. Nevertheless the model demonstrates that the drop in CO2 partial pressure, pCO2, that exists between intercellular airspace and chloroplasts in C3 leaves at high photosynthetic rates, can be reversed under high irradiance when energy is not limiting. The model shows that this is particularly effective at lower intercellular pCO2. Such a system may therefore be of benefit in water‐limited conditions when stomata are closed and low intercellular pCO2 increases photorespiration.  相似文献   

9.
Further evidence has been provided that C4-pathway species characterized by having low malic enzyme activity contain exceptionally high activities of aspartate and alanine aminotransferases. The total activity of both enzymes is distributed about equally between mesophyll and bundle sheath cells. However, the activity in the two cell types is due to different isoenzymes. In addition to the one quantitatively major isoenzyme associated with each cell type there were at least two additional isozymes of each aminotransferase detectable in the different species examined. Increases in activity of both aminotransferases of ten-fold or more were observed during greening of leaves of dark-grown plants. This increased activity was due specifically to the two quantitatively major isoenzymes associated, respectively, with the mesophyll and bundle sheath cells of green leaves, providing further evidence for their specific role in photosynthesis. Apparently, neither the aspartate nor alanine aminotransferases of mesophyll cells was associated with chloroplasts or other subcellular organelles. However, the major aspartate aminotransferase isoenzyme of bundle sheath cells was associated with mitochondria. These findings are discussed in relation to the probable role of aspartate and alanine aminotransferases in C4-pathway photosynthesis.  相似文献   

10.
Compared to the large number of studies focused on the factors controlling C3 photosynthesis efficiency, there are relatively fewer studies of the factors controlling photosynthetic efficiency in C4 leaves. Here, we used a dynamic systems model of C4 photosynthesis based on maize (Zea mays) to identify features associated with high photosynthetic efficiency in NADP-malic enzyme (NADP-ME) type C4 photosynthesis. We found that two additional factors related to coordination between C4 shuttle metabolism and C3 metabolism are required for efficient C4 photosynthesis: (1) accumulating a high concentration of phosphoenolpyruvate through maintaining a large PGA concentration in the mesophyll cell chloroplast and (2) maintaining a suitable oxidized status in bundle sheath cell chloroplasts. These identified mechanisms are in line with the current cellular location of enzymes/proteins involved in the starch synthesis, the Calvin–Benson cycle and photosystem II of NADP-ME type C4 photosynthesis. These findings suggested potential strategies for improving C4 photosynthesis and engineering C4 rice.

High levels of PGA and PEP in mesophyll cell chloroplasts and a suitable oxidation state in bundle sheath cell chloroplasts are the requirements for efficient C4 photosynthesis.  相似文献   

11.
Engineering C4 photosynthesis into rice has been considered a promising strategy to increase photosynthesis and yield. A question that remains to be answered is whether expressing a C4 metabolic cycle into a C3 leaf structure and without removing the C3 background metabolism improves photosynthetic efficiency. To explore this question, we developed a 3D reaction diffusion model of bundle‐sheath and connected mesophyll cells in a C3 rice leaf. Our results show that integrating a C4 metabolic pathway into rice leaves with a C3 metabolism and mesophyll structure may lead to an improved photosynthesis under current ambient CO2 concentration. We analysed a number of physiological factors that influence the CO2 uptake rate, which include the chloroplast surface area exposed to intercellular air space, bundle‐sheath cell wall thickness, bundle‐sheath chloroplast envelope permeability, Rubisco concentration and the energy partitioning between C3 and C4 cycles. Among these, partitioning of energy between C3 and C4 photosynthesis and the partitioning of Rubisco between mesophyll and bundle‐sheath cells are decisive factors controlling photosynthetic efficiency in an engineered C3–C4 leaf. The implications of the results for the sequence of C4 evolution are also discussed.  相似文献   

12.
13.
The intercellular distribution of assimilatory sulfate reduction enzymes between mesophyll and bundle sheath cells was analyzed in maize (Zea mays L.) and wheat (Triticum aestivum L.) leaves. In maize, a C4 plant, 96 to 100% of adenosine 5′-phosphosulfate sulfotransferase and 92 to 100% of ATP sulfurylase activity (EC 2.7.7.4) was detected in the bundle sheath cells. Sulfite reductase (EC 1.8.7.1) and O-acetyl-l-serine sulfhydrylase (EC 4.2.99.8) were found in both bundle sheath and mesophyll cell types. In wheat, a C3 species, ATP sulfurylase and adenosine 5′-phosphosulfate sulfotransferase were found at equivalent activities in both mesophyll and bundle sheath cells. Leaves of etiolated maize plants contained appreciable ATP sulfurylase activity but only trace adenosine 5′-phosphosulfate sulfotransferase activity. Both enzyme activities increased in the bundle sheath cells during greening but remained at negligible levels in mesophyll cells. In leaves of maize grown without addition of a sulfur source for 12 d, the specific activity of adenosine 5′-phosphosulfate sulfotransferase and ATP sulfurylase in the bundle sheath cells was higher than in the controls. In the mesophyll cells, however, both enzyme activities remained undetectable. The intercellular distribution of enzymes would indicate that the first two steps of sulfur assimilation are restricted to the bundle sheath cells of C4 plants, and this restriction is independent of ontogeny and the sulfur nutritional status of the plants.  相似文献   

14.
Despite mounting evidence showing that C4 plants can accumulate more biomass at elevated CO2 partial pressure (p(CO2)), the underlying mechanisms of this response are still largely unclear. In this paper, we review the current state of knowledge regarding the response of C4 plants to elevated p(CO2) and discuss the likely mechanisms. We identify two main routes through which elevated p(CO2) can stimulate the growth of both well-watered and water-stressed C4 plants. First, through enhanced leaf CO2 assimilation rates due to increased intercellular p(CO2). Second, through reduced stomatal conductance and subsequently leaf transpiration rates. Reduced transpiration rates can stimulate leaf CO2 assimilation and growth rates by conserving soil water, improving shoot water relations and increasing leaf temperature. We argue that bundle sheath leakiness, direct CO2 fixation in the bundle sheath or the presence of C3-like photosynthesis in young C4 leaves are unlikely explanations for the high CO2-responsiveness of C4 photosynthesis. The interactions between elevated p(CO2), leaf temperature and shoot water relations on the growth and photosynthesis of C4 plants are identified as key areas needing urgent research.  相似文献   

15.
Enclosure of mitochondria by chloroplasts   总被引:5,自引:1,他引:4       下载免费PDF全文
In Panicum species of the Laxa group, some of which have characteristics intermediate to C3 and C4 photosynthesis species, some mitochondria in leaf bundle sheath cells are surrounded by chloroplasts when viewed in profile. Serial sectioning of leaves of one Laxa species, Panicum schenckii Hack, shows that these mitochondria are enclosed by chloroplasts. Complete enclosure rather than invagination also is indicated by absence of two concentric chloroplast membranes surrounding the mitochondrial profiles.  相似文献   

16.
Suaeda monoica, a C(4) Plant without Typical Bundle Sheaths   总被引:5,自引:4,他引:1       下载免费PDF全文
Suaeda monoica Forssk. ex J. F. Gmel was found to possess the C4 pathway of photosynthesis. The succulent leaves of Suaeda lack a green bundle sheath formation but have a layer of chlorenchyma, containing large and centripetally arranged chloroplasts, which surrounds the water tissue. We suggest that the proximity of a chlorenchymatous cell layer to the vascular bundles is not necessary for the operation of the C4 pathway.  相似文献   

17.
Ultrastructural studies of leaves of seven Panicum species in or closely related to the Laxa group and classified as C3, C4 or C3-C4 intermediate were undertaken to examine features associated with C3 and C4 photosynthesis. The C3 species Panicum rivulare Trin. had few organelles in bundle sheath cell profiles (2 chloroplasts, 1.1 mitochondria, and 0.3 peroxisomes per cell section) compared to an average of 10.6 chloroplasts, 17.7 mitochondria, and 3.2 peroxisomes per bundle sheath cell profile for three C3-C4 species, Panicum milioides Nees ex Trin., Panicum decipiens Nees ex Trin. and Panicum schenckii Hack. However, two other C3 species, Panicum laxum Sw. and Panicum hylaeicum Mez, contained about 0.7, 0.5, and 0.3 as many chloroplasts, mitochondria, and peroxisomes, respectively, as in bundle sheath cell profiles of the C3-C4 species. Chloroplasts and mitochondria in bundle sheath cells were larger than those in mesophyll cells for the C4 species Panicum prionitis Griseb. and the C3-C4 species, but in C3 species the organelles were similar in size or were smaller in the bundle sheath cells. The C3-C4 species and P. laxum and P. hylaeicum exhibited an unusually close association of organelles in bundle sheath cells with mitochondria frequently surrounded in profile by chloroplasts. The high concentrations in bundle sheath cells of somewhat larger organelles than in mesophyll cells correlates with the reduced photorespiration of the C3-C4 species.  相似文献   

18.
Certain members of the family Chenopodiaceae are the dominant species of the deserts of Central Asia; many of them are succulent halophytes which exhibit C4-type CO2 fixation of the NAD- or NADP-ME (malic enzyme) subgroup. In four C4 species of the tribe Salsoleae, the Salsoloid-type Kranz anatomy in leaves or stems was studied in relation to the diversity in anatomy which was found in cotyledons. Halocharis gossypina, has C4 NAD-ME Salsoloid-type photosynthesis in leaves and C3 photosynthesis in dorsoventral non-Kranz cotyledons; Salsola laricina has C4 NAD-ME Salsoloid-type leaves and C4 NAD-ME Atriplicoid-type cotyledons; Haloxylon persicum, has C4 NADP-ME Salsoloid-type green stems and C3 isopalisade non-Kranz cotyledons; and S. richteri has C4 NADP-ME Salsoloid-type leaves and cotyledons. Immunolocalization studies on Rubisco showed strong labelling in bundle sheath cells of leaves and cotyledons of organs having Kranz anatomy. The C4 pathway enzyme phosphoenolpyruvate carboxylase was localized in mesophyll cells, while the malic enzymes were localized in bundle sheath cells of Kranz-type tissue. Immunolocalization by electron microscopy showed NAD-ME is in mitochondria while NADP-ME is in chloroplasts of bundle sheath cells in the respective C4 types. In some C4 organs, it was apparent that subepidermal cells and water storage cells also contain some chloroplasts which have Rubisco, store starch, and thus perform C3 photosynthesis. In non-Kranz cotyledons of Halocharis gossypina and Haloxylon persicum, Rubisco was found in chloroplasts of both palisade and spongy mesophyll cells with the heaviest labelling in the layers of palisade cells, whereas C4 pathway proteins were low or undetectable. The pattern of starch accumulation correlated with the localization of Rubisco, being highest in the bundle sheath cells and lowest in the mesophyll cells of organs having Kranz anatomy. In NAD-ME-type Kranz organs (leaves and cotyledons of S. laricina and leaves of H. gossypina the granal index (length of appressed membranes as a percentage of total length of all membranes) of bundle sheath chloroplasts is 1.5 to 2.5 times higher than that of mesophyll chloroplasts. In contrast, in the NADP-ME-type Kranz organs (S. richteri leaves and cotyledons and H. persicum stems) the granal index of mesophyll chloroplasts is 1.5 to 2.2 times that of the bundle sheath chloroplasts. The mechanism of photosynthesis in these species is discussed in relation to structural differences.  相似文献   

19.
Plants in the field are commonly exposed to fluctuating light intensity, caused by variable cloud cover, self‐shading of leaves in the canopy and/or leaf movement due to turbulence. In contrast to C3 plant species, only little is known about the effects of dynamic light (DL) on photosynthesis and growth in C4 plants. Two C4 and two C3 monocot and eudicot species were grown under steady light or DL conditions with equal sum of daily incident photon flux. We measured leaf gas exchange, plant growth and dry matter carbon isotope discrimination to infer CO2 bundle sheath leakiness in C4 plants. The growth of all species was reduced by DL, despite only small changes in steady‐state gas exchange characteristics, and this effect was more pronounced in C4 than C3 species due to lower assimilation at light transitions. This was partially attributed to increased bundle sheath leakiness in C4 plants under the simulated lightfleck conditions. We hypothesize that DL leads to imbalances in the coordination of C4 and C3 cycles and increasing leakiness, thereby decreasing the quantum efficiency of photosynthesis. In addition to their other constraints, the inability of C4 plants to efficiently utilize fluctuating light likely contributes to their absence in such environments as forest understoreys.  相似文献   

20.
Bundle sheath chloroplasts have been isolated from Zea mays leaves by a procedure involving enzymic digestion of mechanically prepared strands of bundle sheath cells followed by gentle breakage and filtration. The resulting crude chloroplast preparation was enriched by Percoll density layer centrifugation to yield intact chloroplasts (about 20 micrograms chlorophyll per 10-gram leaf tissue) with high metabolic activities. Based on activities of marker enzymes in the chloroplast and bundle sheath cell extracts, the chloroplasts were essentially free of contamination by other organelles and cytoplasmic material, and were generally about 70% intact. Chlorophyll a/b ratios were high (about 10). With appropriate substrates these chloroplasts displayed high rates of malate decarboxylation, measured as pyruvate formation, and CO2 assimilation (maximum rates approximately 5 and 3 micromoles per minute per milligram chlorophyll, respectively). These activities were light dependent, linear for at least 20 minutes at 30°C, and displayed highest rates at pH 8.0. High metabolic rates were dependent on addition of an exogenous source of carbon to the photosynthetic carbon reduction cycle (3-phosphoglycerate or dihydroxyacetone phosphate) and a nucleotide (ATP, ADP, or AMP), as well as aspartate. Generally, neither malate decarboxylation nor CO2 assimilation occurred substantially in the absence of the other activity indicating a close relationship between these processes. Presumably, NADPH required for the photosynthetic carbon reduction cycle is largely supplied during the decarboxylation of malate by NADP-malic enzyme. The results are discussed in relation to the role of bundle sheath chloroplasts in C4 photosynthesis by species of the NADP-malic enzyme type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号