首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Induction and secretion of acid phosphatases (APases) is thought to be an adaptive mechanism that helps plants survive and grow under phosphate (Pi) deprivation, in Arabidopsis, there are 29 purple acid phosphatase (AtPAP) genes. To systematically investigate the roles of different AtPAPs, we first identified knockout or knock-down T-DNA lines for all 29 AtPAP genes. Using these atpap mutants combined with in-gel and quantitative APase enzyme assays, we demonstrated that AtPAP12 and AtPAP26 are two major intracellular and secreted APases in Arabidopsis while AtPAPlo is mainly a secreted APase. On Pi-deficient (P-) medium or P- medium supplemented with the organophosphates ADP and fructose-6-phosphate (Fru-6-P), growth of atpaplo was significantly reduced whereas growth of atpap12 was only moderately reduced, and growth of atpap26 was nearly equal to that of the wild type (WT). Overexpression of the AtPAP12 or AtPAP26 gene, however, caused plants to grow better on P- or P- medium supplemented with ADP or Fru-6-P. Interest-ingly, Pi levels are essentially the same for the WT and overexpressing lines, although these two types of plants have significantly different growth phenotypes. These results suggest that the APases may have other roles besides enhancing internal Pi recycling or releasing Pi from external organophosphates for plant uptake.  相似文献   

3.
4.
5.
6.
The SPORULATION 11 (SPO11) proteins are among eukaryotic the topoisomerase VIA (Topo VIA) homologs involved in modulating various important biological processes, such as growth, development and stress response via endoreduplication in plants, but the underlying mechanism response to stress remains largely unknown under salt treatment. Here, we attempted to characterize a homolog of TOP VIA in upland cotton (Gossypium hirsutum L.), designated as GhSPO11‐3. The silencing of GhSPO11‐3 in cotton plants resulted in a dwarf phenotype with a failure of cell endoreduplication and a phase shift in the ploidy levels. The GhSPO11‐3‐silenced plants also showed substantial changes including accumulated malondialdehyde, significantly reduced chlorophyll and proline contents and decreased antioxidative enzyme activity after salt treatment. In addition, transgenic Arabidopsis lines overexpressing GhSPO11‐3 accelerated both leaf and root growth with cell expansion and endopolyploidy. Both leaf stomatal density and aperture were markedly decreased, and the transgenic Arabidopsis lines were more tolerant with expression of stress‐responsive genes under salinity stress. Furthermore, consistent with the reduced reactive oxygen species (ROS), the expression of ROS scavenging‐related genes was largely reinforced, and antioxidant enzyme activities were accordingly significantly enhanced in transgenic Arabidopsis lines under salt stress. In general, these results indicated that GhSPO11‐3 likely respond to salt stress by positively regulating root growth, stomatal response, ROS production and the expression of stress‐related genes to cope with adverse conditions in plants.  相似文献   

7.
8.
The potential of the MDK4‐20 promoter of Arabidopsis thaliana to direct effective transgenic expression of a secreted nematode‐repellent peptide was investigated. Its expression pattern was studied in both transgenic Arabidopsis and Solanum tuberosum (potato) plants. It directed root‐specific β‐glucuronidase expression in both species that was chiefly localized to cells of the root cap. Use of the fluorescent timer protein dsRED‐E5 established that the MDK4‐20 promoter remains active for longer than the commonly used constitutive promoter CaMV35S in separated potato root border cells. Transgenic Arabidopsis lines that expressed the nematode‐repellent peptide under the control of either AtMDK4‐20 or CaMV35S reduced the establishment of the beet cyst nematode Heterodera schachtii. The best line using the AtMDK4‐20 promoter displayed a level of resistance >80%, comparable to that of lines using the CaMV35S promoter. In transgenic potato plants, 94.9 ± 0.8% resistance to the potato cyst nematode Globodera pallida was achieved using the AtMDK4‐20 promoter, compared with 34.4 ± 8.4% resistance displayed by a line expressing the repellent peptide from the CaMV35S promoter. These results establish the potential of the AtMDK4‐20 promoter to limit expression of a repellent peptide whilst maintaining or even improving the efficacy of the cyst‐nematode defence.  相似文献   

9.
10.
On the basis of microarray analyses of the salt‐tolerant wheat mutant RH8706‐49, a previously unreported salt‐induced gene, designated as TaHPS [Triticum aestivum hypothetical (HPS)‐like protein], was cloned. Real‐time quantitative polymerase chain reaction analyses showed that expression of the gene was induced by abscisic acid, salt and drought. The encoded protein was found to be localized mainly in the plasma membranes. Transgenic Arabidopsis plants overexpressing TaHPS were more tolerant to salt and drought stresses than non‐transgenic wild‐type (WT) plants. Under salt stress, the root cells of the transgenic plants secreted more Na+ and guard cells took up more Ca2+ ions. Compared with wild‐type plants, TaHPS‐expressing transgenic plants showed significantly lower amylase activity and glucose and malic acid levels. Our results showed that the expression of TaHPS inhibited amylase activity, which subsequently led to a closure of stomatal apertures and thus improved plant tolerance to salt and drought.  相似文献   

11.
12.
Systemic acquired resistance (SAR) is a plant defence response that provides immunity to distant uninfected leaves after an initial localised infection. The lipid transfer protein (LTP) Defective in Induced Resistance1 (DIR1) is an essential component of SAR that moves from induced to distant leaves following a SAR‐inducing local infection. To understand how DIR1 is transported to distant leaves during SAR, we analysed DIR1 movement in transgenic Arabidopsis lines with reduced cell‐to‐cell movement caused by the overexpression of Plasmodesmata‐Located Proteins PDLP1 and PDLP5. These PDLP‐overexpressing lines were defective for SAR, and DIR1 antibody signals were not observed in phloem sap‐enriched petiole exudates collected from distant leaves. Our data support the idea that cell‐to‐cell movement of DIR1 through plasmodesmata is important during long‐distance SAR signalling in Arabidopsis.  相似文献   

13.
S‐adenosyl‐l ‐methionine (SAM) synthetase is the key enzyme involved in the biosynthesis of SAM, which serves as a common precursor for polyamines (PAs) and ethylene. A SAM synthetase cDNA (SlSAMS1) was introduced into the tomato genome using the Agrobacterium tumefaciens transformation method. Transgenic plants overexpressing SlSAMS1 exhibited a significant increase in tolerance to alkali stress and maintained nutrient balance, higher photosynthetic capacity and lower oxidative stress compared with WT lines. Both in vivo and in vitro experiments indicated that the function of SlSAMS1 mainly depended on the accumulation of Spd and Spm in the transgenic lines. A grafting experiment showed that rootstocks from SlSAMS1‐overexpressing plants provided a stronger root system, increased PAs accumulation, essential elements absorption, and decreased Na+ absorption in the scions under alkali stress. As a result, fruit set and yield were significantly enhanced. To our knowledge, this is the first report to provide evidence that SlSAMS1 positively regulates tomato tolerance to alkali stress and plays a major role in modulating polyamine metabolism, resulting in maintainability of nutrient and ROS balance.  相似文献   

14.
15.
16.
The Golgi‐located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6–GFP is targeted to the trans‐Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi‐related functions, such as an altered abundance of certain N‐glycosylated proteins, altered composition of cell‐wall hemicelluose, and higher sensitivity to the Golgi α‐mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a ‘mimic disease’ phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild‐type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans‐Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance.  相似文献   

17.
Soybean (Glycine max) is an important oil crop in agricultural production, but low phosphorus (P) availability limits soybean growth and production. Expansin is a family of plant cell wall proteins and involved in a variety of physiological processes, including cell division and enlargement, root growth and leaf development. To test the potential effects of expansins on crop production, we have developed soybean transgenic plants overexpressing a soybean β‐expansin gene GmEXPB2, which was significantly induced by phosphate (Pi) starvation. The results indicated that constitutive overexpression of GmEXPB2 promoted leaf expansion, sequentially stimulated root growth and consequently resulted in improved P efficiency in the transgenic plants under P‐limited conditions in hydroponics. In particular, when tested in calcareous (CS) and acid soils (AS), the two GmEXPB2 transgenic soybean lines showed above 25 and 40% increases in plant dry weight and P content, respectively to wild‐type plants in low‐P CS, but not in AS. To our knowledge, this is the first report in which improvement of P efficiency could be achieved through constitutive overexpression of an endogenous EXPB gene in soybean. These findings suggest that genetic modification of root and leaf traits might be a suitable strategy for improving crop production in low‐P soils.  相似文献   

18.
Transgenic Trifolium subterraneum expressing a phytase gene (phyA) from Aspergillus niger were generated. Five independently transformed lines showed an average 77‐fold increase in exuded phytase activity in comparison with null segregant and wild‐type controls. Unlike other phosphatases, exuded phytase activity was unaffected by P supply, verifying the constitutive expression of phyA. Transgenic T. subterraneum grown in agar with P supplied as phytate, took up 1.3‐ to 3.6‐fold more P than controls and had equivalent P uptake to plants supplied with orthophosphate. This unique phenotype was compromised when the plants were grown in soil. None of the five lines showed increased shoot biomass or total P uptake in an unfertilized, low‐P soil taken from under permanent pasture. With addition of P, one of the five transgenic lines had consistently greater P nutrition compared with control plants. Despite variable growth and P nutrition responses, P uptake per root length was on average greater for transgenic lines. Exudation of phytase by transgenic T. subterraneum allowed utilization of P from phytate in non‐sorbing, sterile laboratory media, but was less effective when plants were grown in soil. Release of extracellular phytase is therefore not the only requirement for the acquisition of P from endogenous soil phytate by plants.  相似文献   

19.
Despite the high isoform multiplicity of aquaporins in plants, with 35 homologues including 13 plasma membrane intrinsic proteins (PIPs) in Arabidosis thaliana, the individual and integrated functions of aquaporins under various physiological conditions remain unclear. To better understand aquaporin functions in plants under various stress conditions, we examined transgenic Arabidopsis and tobacco plants that constitutively overexpress Arabidopsis PIP1;4 or PIP2;5 under various abiotic stress conditions. No significant differences in growth rates and water transport were found between the transgenic and wild-type plants when grown under favorable growth conditions. The transgenic plants overexpressing PIP1;4 or PIP2;5 displayed a rapid water loss under dehydration stress, which resulted in retarded germination and seedling growth under drought stress. In contrast, the transgenic plants overexpressing PIP1;4 or PIP2;5 showed enhanced water flow and facilitated germination under cold stress. The expression of several PIPs was noticeably affected by the overexpression of PIP1;4 or PIP2;5 in Arabidopsis under dehydration stress, suggesting that the expression of one aquaporin isoform influences the expression levels of other aquaporins under stress conditions. Taken together, our results demonstrate that overexpression of an aquaporin affects the expression of endogenous aquaporin genes and thereby impacts on seed germination, seedling growth, and stress responses of the plants under various stress conditions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号