首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prey camouflage is an evolutionary response to predation pressure. Cephalopods have extensive camouflage capabilities and studying them can offer insight into effective camouflage design. Here, we examine whether cuttlefish, Sepia officinalis, show substrate or camouflage pattern preferences. In the first two experiments, cuttlefish were presented with a choice between different artificial substrates or between different natural substrates. First, the ability of cuttlefish to show substrate preference on artificial and natural substrates was established. Next, cuttlefish were offered substrates known to evoke three main camouflage body pattern types these animals show: Uniform or Mottle (function by background matching); or Disruptive. In a third experiment, cuttlefish were presented with conflicting visual cues on their left and right sides to assess their camouflage response. Given a choice between substrates they might encounter in nature, we found no strong substrate preference except when cuttlefish could bury themselves. Additionally, cuttlefish responded to conflicting visual cues with mixed body patterns in both the substrate preference and split substrate experiments. These results suggest that differences in energy costs for different camouflage body patterns may be minor and that pattern mixing and symmetry may play important roles in camouflage.  相似文献   

2.
Cuttlefish are colour blind yet they appear to produce colour‐coordinated patterns for camouflage. Under natural in situ lighting conditions in southern Australia, we took point‐by‐point spectrometry measurements of camouflaged cuttlefish, Sepia apama, and various natural objects in the immediate visual surrounds to quantify the degree of chromatic resemblance between cuttlefish and backgrounds to potential fish predators. Luminance contrast was also calculated to determine the effectiveness of cuttlefish camouflage to this information channel both for animals with or without colour vision. Uniform body patterns on a homogeneous background of algae showed close resemblance in colour and luminance; a Uniform pattern on a partially heterogeneous background showed mixed levels of resemblance to certain background features. A Mottle pattern with some disruptive components on a heterogeneous background showed general background resemblance to some benthic objects nearest the cuttlefish. A noteworthy observation for a Disruptive body pattern on a heterogeneous background was the wide range in spectral contrasts compared to Uniform and Mottle patterns. This suggests a shift in camouflage tactic from background resemblance (which hinders detection by the predator) to more specific object resemblance and disruptive camouflage (which retards recognition). © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 535–551.  相似文献   

3.
Cuttlefish are cephalopods capable of rapid camouflage responses to visual stimuli. However, it is not always clear to what these animals are responding. Previous studies have found cuttlefish to be more responsive to lateral stimuli rather than substrate. However, in previous works, the cuttlefish were allowed to settle next to the lateral stimuli. In this study, we examine whether juvenile cuttlefish (Sepia officinalis) respond more strongly to visual stimuli seen on the sides versus the bottom of an experimental aquarium, specifically when the animals are not allowed to be adjacent to the tank walls. We used the Sub Sea Holodeck, a novel aquarium that employs plasma display screens to create a variety of artificial visual environments without disturbing the animals. Once the cuttlefish were acclimated, we compared the variability of camouflage patterns that were elicited from displaying various stimuli on the bottom versus the sides of the Holodeck. To characterize the camouflage patterns, we classified them in terms of uniform, disruptive, and mottled patterning. The elicited camouflage patterns from different bottom stimuli were more variable than those elicited by different side stimuli, suggesting that S. officinalis responds more strongly to the patterns displayed on the bottom than the sides of the tank. We argue that the cuttlefish pay more attention to the bottom of the Holodeck because it is closer and thus more relevant for camouflage.  相似文献   

4.
Individual cuttlefish, octopus and squid have the versatile capability to use body patterns for background matching and disruptive coloration. We define—qualitatively and quantitatively—the chief characteristics of the three major body pattern types used for camouflage by cephalopods: uniform and mottle patterns for background matching, and disruptive patterns that primarily enhance disruptiveness but aid background matching as well. There is great variation within each of the three body pattern types, but by defining their chief characteristics we lay the groundwork to test camouflage concepts by correlating background statistics with those of the body pattern. We describe at least three ways in which background matching can be achieved in cephalopods. Disruptive patterns in cuttlefish possess all four of the basic components of ‘disruptiveness’, supporting Cott''s hypotheses, and we provide field examples of disruptive coloration in which the body pattern contrast exceeds that of the immediate surrounds. Based upon laboratory testing as well as thousands of images of camouflaged cephalopods in the field (a sample is provided on a web archive), we note that size, contrast and edges of background objects are key visual cues that guide cephalopod camouflage patterning. Mottle and disruptive patterns are frequently mixed, suggesting that background matching and disruptive mechanisms are often used in the same pattern.  相似文献   

5.
To achieve effective visual camouflage, prey organisms must combine cryptic coloration with the appropriate posture and behaviour to render them difficult to be detected or recognized. Body patterning has been studied in various taxa, yet body postures and their implementation on different backgrounds have seldom been studied experimentally. Here, we provide the first experimental evidence that cuttlefish (Sepia officinalis), masters of rapid adaptive camouflage, use visual cues from adjacent visual stimuli to control arm postures. Cuttlefish were presented with a square wave stimulus (period = 0.47 cm; black and white stripes) that was angled 0°, 45° or 90° relative to the animals' horizontal body axis. Cuttlefish positioned their arms parallel, obliquely or transversely to their body axis according to the orientation of the stripes. These experimental results corroborate our field observations of cuttlefish camouflage behaviour in which flexible, precise arm posture is often tailored to match nearby objects. By relating the cuttlefishes' visual perception of backgrounds to their versatile postural behaviour, our results highlight yet another of the many flexible and adaptive anti-predator tactics adopted by cephalopods.  相似文献   

6.
Cuttlefish change their appearance rapidly for camouflage on different backgrounds. Effective camouflage for a benthic organism such as cuttlefish must deceive predators viewing from above as well as from the side, thus the choice of camouflage skin pattern is expected to account for horizontal and vertical background information. Previous experiments dealt only with the former, and here we explore some influences of background patterns oriented vertically in the visual background. Two experiments were conducted: (1) to determine whether cuttlefish cue visually on vertical background information; and (2) if a visual cue presented singly (either horizontally or vertically) is less, equally or more influential than a visual cue presented both horizontally and vertically. Combinations of uniform and checkerboard backgrounds (either on the bottom or wall) evoked disruptive coloration in all cases, implying that high-contrast, non-uniform backgrounds are responded to with priority over uniform backgrounds. However, there were differences in the expression of disruptive components if the checkerboard was presented simultaneously on the bottom and wall, or solely on the wall or the bottom. These results demonstrate that cuttlefish respond to visual background stimuli both in the horizontal and vertical plane, a finding that supports field observations of cuttlefish and octopus camouflage. Both A. Barbosa and L. Litman are first authors. An erratum to this article can be found at  相似文献   

7.
Cephalopods are well known for their diverse, quick-changing camouflage in a wide range of shallow habitats worldwide. However, there is no documentation that cephalopods use their diverse camouflage repertoire at night. We used a remotely operated vehicle equipped with a video camera and a red light to conduct 16 transects on the communal spawning grounds of the giant Australian cuttlefish Sepia apama situated on a temperate rock reef in southern Australia. Cuttlefish ceased sexual signaling and reproductive behavior at dusk and then settled to the bottom and quickly adapted their body patterns to produce camouflage that was tailored to different backgrounds. During the day, only 3% of cuttlefish were camouflaged on the spawning ground, but at night 86% (71 of 83 cuttlefish) were camouflaged in variations of three body pattern types: uniform (n=5), mottled (n=33), or disruptive (n=34) coloration. The implication is that nocturnal visual predators provide the selective pressure for rapid, changeable camouflage patterning tuned to different visual backgrounds at night.  相似文献   

8.
A major component of cephalopod adaptive camouflage behavior has rarely been studied: their ability to change the three‐dimensionality of their skin by morphing their malleable dermal papillae. Recent work has established that simple, conical papillae in cuttlefish (Sepia officinalis) function as muscular hydrostats; that is, the muscles that extend a papilla also provide its structural support. We used brightfield and scanning electron microscopy to investigate and compare the functional morphology of nine types of papillae of different shapes, sizes and complexity in six species: S. officinalis small dorsal papillae, Octopus vulgaris small dorsal and ventral eye papillae, Macrotritopus defilippi dorsal eye papillae, Abdopus aculeatus major mantle papillae, O. bimaculoides arm, minor mantle, and dorsal eye papillae, and S. apama face ridge papillae. Most papillae have two sets of muscles responsible for extension: circular dermal erector muscles arranged in a concentric pattern to lift the papilla away from the body surface and horizontal dermal erector muscles to pull the papilla's perimeter toward its core and determine shape. A third set of muscles, retractors, appears to be responsible for pulling a papilla's apex down toward the body surface while stretching out its base. Connective tissue infiltrated with mucopolysaccharides assists with structural support. S. apama face ridge papillae are different: the contraction of erector muscles perpendicular to the ridge causes overlying tissues to buckle. In this case, mucopolysaccharide‐rich connective tissue provides structural support. These six species possess changeable papillae that are diverse in size and shape, yet with one exception they share somewhat similar functional morphologies. Future research on papilla morphology, biomechanics and neural control in the many unexamined species of octopus and cuttlefish may uncover new principles of actuation in soft, flexible tissue. J. Morphol. 275:371–390, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Cuttlefish possess the complex ability to identify approaching threats and then to selectively express the appropriate defense. We examined the visual cues used by Sepia officinalis cuttlefish during predator detection and the responses they selected. Using computer-generated stimuli, we set out to quantitate the deimatic responses to artificial looming stimuli of different shapes and contrasts. Defensive behavior gradually intensified as geometrical shapes resembled an image of a fish. Therefore, in addition to an object’s size or its sudden increase in size, cuttlefish use form recognition to identify a threat. Cuttlefish demonstrated equal performance in predator detection trough clear water when presented with intensity versus polarization contrasts. However, when the water turbidity increased, the cuttlefish still detected looming fish shapes based on polarization contrast even when intensity information alone did not suffice. These results demonstrate the interplay between intensity and polarization information transmission and processing in the spatial domain. As nectobenthic organisms, cuttlefish probably experience low visibility conditions on a regular basis. The ability to see further into turbid water and to better detect an approaching object would be beneficial for their survival.  相似文献   

10.
Humans use shading as a cue to three-dimensional form by combining low-level information about light intensity with high-level knowledge about objects and the environment. Here, we examine how cuttlefish Sepia officinalis respond to light and shadow to shade the white square (WS) feature in their body pattern. Cuttlefish display the WS in the presence of pebble-like objects, and they can shade it to render the appearance of surface curvature to a human observer, which might benefit camouflage. Here we test how they colour the WS on visual backgrounds containing two-dimensional circular stimuli, some of which were shaded to suggest surface curvature, whereas others were uniformly coloured or divided into dark and light semicircles. WS shading, measured by lateral asymmetry, was greatest when the animal rested on a background of shaded circles and three-dimensional hemispheres, and less on plain white circles or black/white semicircles. In addition, shading was enhanced when light fell from the lighter side of the shaded stimulus, as expected for real convex surfaces. Thus, the cuttlefish acts as if it perceives surface curvature from shading, and takes account of the direction of illumination. However, the direction of WS shading is insensitive to the directions of background shading and illumination; instead the cuttlefish tend to turn to face the light source.  相似文献   

11.
The cuttlefish, Sepia officinalis, provides a fascinating opportunity to investigate the mechanisms of camouflage as it rapidly changes its body patterns in response to the visual environment. We investigated how edge information determines camouflage responses through the use of spatially high-pass filtered 'objects' and of isolated edges. We then investigated how the body pattern responds to objects defined by texture (second-order information) compared with those defined by luminance. We found that (i) edge information alone is sufficient to elicit the body pattern known as Disruptive, which is the camouflage response given when a whole object is present, and furthermore, isolated edges cause the same response; and (ii) cuttlefish can distinguish and respond to objects of the same mean luminance as the background. These observations emphasize the importance of discrete objects (bounded by edges) in the cuttlefish's choice of camouflage, and more generally imply that figure-ground segregation by cuttlefish is similar to that in vertebrates, as might be predicted by their need to produce effective camouflage against vertebrate predators.  相似文献   

12.
Coleoid cephalopods adaptively change their body patterns (color, contrast, locomotion, posture, and texture) for camouflage and signaling. Benthic octopuses and cuttlefish possess the capability, unique in the animal kingdom, to dramatically and quickly change their skin from smooth and flat to rugose and three‐dimensional. The organs responsible for this physical change are the skin papillae, whose biomechanics have not been investigated. In this study, small dorsal papillae from cuttlefish (Sepia officinalis) were preserved in their retracted or extended state, and examined with a variety of histological techniques including brightfield, confocal, and scanning electron microscopy. Analyses revealed that papillae are composed of an extensive network of dermal erector muscles, some of which are arranged in concentric rings while others extend across each papilla's diameter. Like cephalopod arms, tentacles, and suckers, skin papillae appear to function as muscular hydrostats. The collective action of dermal erector muscles provides both movement and structural support in the absence of rigid supporting elements. Specifically, concentric circular dermal erector muscles near the papilla's base contract and push the overlying tissue upward and away from the mantle surface, while horizontally arranged dermal erector muscles pull the papilla's perimeter toward its center and determine its shape. Each papilla has a white tip, which is produced by structural light reflectors (leucophores and iridophores) that lie between the papilla's muscular core and the skin layer that contains the pigmented chromatophores. In extended papillae, the connective tissue layer appeared thinner above the papilla's apex than in surrounding areas. This result suggests that papilla extension might create tension in the overlying connective tissue and chromatophore layers, storing energy for elastic retraction. Numerous, thin subepidermal muscles form a meshwork between the chromatophore layer and the epidermis and putatively provide active papillary retraction. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
It is virtually impossible to camouflage a moving target against a non-uniform background, but strategies have been proposed to reduce detection and targeting of movement. Best known is the idea that high contrast markings produce ‘motion dazzle’, which impairs judgement of speed and trajectory. The ability of the cuttlefish Sepia officinalis to change its visual appearance allows us to compare the animal''s choice of patterns during movement to the predictions of models of motion camouflage. We compare cuttlefish body patterns used during movement with those expressed when static on two background types; one of which promotes low-contrast mottle patterns and the other promotes high-contrast disruptive patterns. We find that the body pattern used during motion is context-specific and that high-contrast body pattern components are significantly reduced during movement. Thus, in our experimental conditions, cuttlefish do not use high contrast motion dazzle. It may be that, in addition to being inherently conspicuous during movement, moving high-contrast patterns will attract attention because moving particles in coastal waters tend to be of small size and of low relative contrast.  相似文献   

14.
Juvenile cuttlefish (Sepia officinalis) camouflage themselves by changing their body pattern according to the background. This behaviour can be used to investigate visual perception in these molluscs and may also give insight into camouflage design. Edge detection is an important aspect of vision, and here we compare the body patterns that cuttlefish produced in response to checkerboard backgrounds with responses to backgrounds that have the same spatial frequency power spectrum as the checkerboards, but randomized spatial phase. For humans, phase randomization removes visual edges. To describe the cuttlefish body patterns, we scored the level of expression of 20 separate pattern 'components', and then derived principal components (PCs) from these scores. After varimax rotation, the first component (PC1) corresponded closely to the so-called disruptive body pattern, and the second (PC2) to the mottle pattern. PC1 was predominantly expressed on checkerboards, and PC2 on phase-randomized backgrounds. Thus, cuttlefish probably have edge detectors that control the expression of disruptive pattern. Although the experiments used unnatural backgrounds, it seems probable that cuttlefish display disruptive camouflage when there are edges in the visual background caused by discrete objects such as pebbles. We discuss the implications of these findings for our understanding of disruptive camouflage.  相似文献   

15.
Cuttlefish powder (CFP) from Sepia officinalis by-products was prepared and tested as a fermentation substrate for microbial growth and protease production by several species of bacteria: Bacillus licheniformis, Bacillus subtilis, Pseudomonas aeruginosa, Bacillus cereus BG1, and Vibrio parahaemolyticus. All microorganisms studied grew well and produced protease activity when cultivated in medium containing only CFP indicating that the strains can obtain their carbon and nitrogen source requirements directly from whole by-product proteins. Moreover, it was found that the addition to the cuttlefish medium of diluted fishery wastewaters (FWW), generated by marine-products processing factories, enhanced the production of protease. Maximum activity was obtained when cells were grown in cuttlefish media containing 5-times or 10-times diluted FWW. Five-times diluted FWW enhanced protease production by B. cereus BG1 and B. subtilis by 467% and 75% more than control media, respectively. The enhancement could have been due to the high organic content or high salts in FWW.As a result, cuttlefish by-products powder enriched with diluted FWW was found to be a suitable growth media for protease-producing strains. This new process, which converts underutilized wastes (liquid and solid) into more marketable and acceptable forms, coupled with protease production, can be an alternative way to the biological treatment of solid and liquid wastes generated by the cuttlefish processing industry.  相似文献   

16.
Cephalopods are renowned for their ability to adaptively camouflage on diverse backgrounds. Sepia officinalis camouflage body patterns have been characterized spectrally in the laboratory but not in the field due to the challenges of dynamic natural light fields and the difficulty of using spectrophotometric instruments underwater. To assess cuttlefish color match in their natural habitats, we studied the spectral properties of S. officinalis and their backgrounds on the Aegean coast of Turkey using point-by-point in situ spectrometry. Fifteen spectrometry datasets were collected from seven cuttlefish; radiance spectra from animal body components and surrounding substrates were measured at depths shallower than 5 m. We quantified luminance and color contrast of cuttlefish components and background substrates in the eyes of hypothetical di- and trichromatic fish predators. Additionally, we converted radiance spectra to sRGB color space to simulate their in situ appearance to a human observer. Within the range of natural colors at our study site, cuttlefish closely matched the substrate spectra in a variety of body patterns. Theoretical calculations showed that this effect might be more pronounced at greater depths. We also showed that a non-biological method (“Spectral Angle Mapper”), commonly used for spectral shape similarity assessment in the field of remote sensing, shows moderate correlation to biological measures of color contrast. This performance is comparable to that of a traditional measure of spectral shape similarity, hue and chroma. This study is among the first to quantify color matching of camouflaged cuttlefish in the wild.  相似文献   

17.
Eye camouflage and false eyespots: chaetodontid responses to predators   总被引:2,自引:0,他引:2  
Synopsis The roles of eye camouflage and eyespots are examined within the genusChaetodon as are the various theories explaining the evolutionary significance of the brilliant colors. While eye camouflage is not common among reef fishes, 91% of the 90 species ofChaetodon, have eyemasks (82) or black heads (4). Eye camouflage occurs concomitantly with diurnal false eyespots in 45.5% (41 of 90) of the species. Diurnal false eyespots serve to misdirect attacks by predators and/or to advertise unpalatability. False eyespots are located on areas of the body which allow escape and survival following an attack. Data suggesting that predators learn about the undesirability of butterflyfishes are presented. Butterflyfishes are inactive at night, forage during the day and spawn at dusk. It is unlikely that nocturnal color changes are useful in conspecific interactions and are therefore believed to provide visual cues to potential predators. Nocturnal eyespots probably function to intimidate potential predators but could also remind them of unpalatability. The aggression release hypothesis (Lorenz 1962, 1966) to explain the brilliant coloration of chaetodontids is not supported because butterflyfish coloration changes and few species are territorial. The species recognition hypothesis (Zumpe 1965) is not supported by results of field experiments. The disruptive coloration hypothesis (Longley 1917) is rejected as a general explanation for poster coloration but does explain the prevalence of eyebars ofChaetodon spp. The aposematic hypothesis (Gosline 1965) is supported by morphology, behavior, a lack of predation and field observations. The possibility of Mullerian mimicry is suggested. It is concluded that the primary selective force behind chaetodontid coloration, particularly eyespots, has been predation and color patterns have evolved to minimize this threat.  相似文献   

18.
Disruptive coloration breaks up the shape and destroys the outline of an object, hindering detection. The principle was first suggested approximately a century ago, but, although research has significantly increased, the field remains conceptually unstructured and no unambiguous definition exists. This has resulted in variable use of the term, making it difficult to formulate testable hypotheses that are comparable between studies, slowing down advancement in this field. Related to this, a range of studies do not effectively distinguish between disruption and other forms of camouflage. Here, we give a formal definition of disruptive coloration, reorganize a range of sub-principles involved in camouflage and argue that five in particular are specifically related to disruption: differential blending; maximum disruptive contrast; disruption of surface through false edges; disruptive marginal patterns; and coincident disruptive coloration. We discuss how disruptive coloration can be optimized, how it can relate to other forms of camouflage markings and where future work is particularly needed.  相似文献   

19.
YH Lee  HY Yan  CC Chiao 《Biology letters》2012,8(5):740-743
Although cuttlefish are capable of showing diverse camouflage body patterns against a variety of background substrates, whether they show background preference when given a choice of substrates is not well known. In this study, we characterized the background choice of post-embryonic cuttlefish (Sepia pharaonis) and examined the effects of rearing visual environments on their background preferences. Different rearing backgrounds (enriched, uniformly grey and checkerboard) were used to raise cuttlefish from eggs or hatchlings, and four sets of two-background-choice experiments (differences in contrast, shape, size and side) were conducted at day 1 and weeks 4, 8 and 12 post-hatch. Cuttlefish reared in the enriched environment preferred high-contrast backgrounds at all post-embryonic stages. In comparison, those reared in the impoverished environments (uniformly grey and checkerboard) had either reversed or delayed high-contrast background preference. In addition, cuttlefish raised on the uniformly grey background, exposed to a checkerboard briefly (0.5 or 3 h) at week 4 and tested at week 8 showed increased high-contrast background preference. Interestingly, cuttlefish in the enriched group preferred an object size similar to their body size at day 1 and week 4, but changed this preference to smaller objects at week 12. These results suggest that high-contrast backgrounds may be more adaptive for juvenile cuttlefish, and visually enriched environments are important for the development of these background preference behaviours.  相似文献   

20.
Cephalopods, and in particular the cuttlefish Sepia officinalis, are common models for studies of camouflage and predator avoidance behaviour. Preventing detection by predators is especially important to this group of animals, most of which are soft-bodied, lack physical defences, and are subject to both visually and non-visually mediated detection. Here, we report a novel cryptic mechanism in S. officinalis in which bioelectric cues are reduced via a behavioural freeze response to a predator stimulus. The reduction of bioelectric fields created by the freeze-simulating stimulus resulted in a possible decrease in shark predation risk by reducing detectability. The freeze response may also facilitate other non-visual cryptic mechanisms to lower predation risk from a wide range of predator types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号