首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
In recent years, the interest in the use of bacteria for biological control of plant-pathogenic fungi has increased. We studied the possible side effects of coating barley seeds with the antagonistic strain Pseudomonas fluorescens DR54 or a commercial fungicide, imazalil. This was done by monitoring the number of indigenous Pseudomonas organisms and actinomycetes on barley roots during growth in soil, harvest after 50 days, and subsequent decomposition. Bacteria were enumerated by traditional plate spreading on Gould's S1 agar (Pseudomonas) and as filamentous colonies on Winogradsky agar (actinomycetes) and by two quantitative competitive PCR assays. For this we developed an assay targeting Streptomyces and closely related genera. DR54 constituted more than 75% of the Pseudomonas population at the root base during the first 21 days but decreased to less than 10% at day 50. DR54 was not successful in colonizing root tips. Initially, DR54 affected the number of indigenous Pseudomonas organisms negatively, whereas imazalil affected Pseudomonas numbers positively, but the effects were transient. Although plate counts were considerably lower than the number of DNA copies, the two methods correlated well for Pseudomonas during plant growth, but after plant harvest Pseudomonas-specific DNA copy numbers decreased while plate counts were in the same magnitude as before. Hence, Pseudomonas was 10-fold more culturable in a decomposition environment than in the rhizosphere. The abundance of actinomycetes was unaffected by DR54 or imazalil amendments, and CFU and quantitative PCR results correlated throughout the experiment. The abundance of actinomycetes increased gradually, mostly in numbers of DNA copies, confirming their role in colonizing old roots.  相似文献   

2.
U. Schleiff 《Plant and Soil》1986,94(1):143-146
Summary The water uptake rates of roots in saline soils are depressed by the simultaneously decreasing matric and osmotic water potentials in the soil surrounding the roots (rhizospheric soil). Unfortunately there are no reliable tools available for direct measurements of the effect of decreasing water potentials in the rhizospheric soil on the uptake rate of soil water by roots. This paper presents some results of a vegetation technique for studying the effect of different combinations of osmotic and matric water potentials in the rhizospheric soil on the water uptake rates of barley roots. Water uptake rates were reduced to a greater extent by decreasing soil matric water potentials than by decreasing soil osmotic water potentials. According to the results of this experiment, there was no relationship between the total soil water potential of a sandy soil and the water uptake rates when the roots were exposed to different combinations of and .  相似文献   

3.
4.
5.
6.
Fourteen strains of Pseudomonas fluorescens isolated from rhizosphere soil of rice were tested for their antagonistic effect towards Rhizoctonia solani, the rice sheath blight fungus. Among them, PfMDU2 was the most effective in inhibiting mycelial growth of R. solani in vitro. Production of chitinase, beta-1,3-glucanase, siderophores, salicylic acid (SA) and hydrogen cyanide (HCN) by P. fluorescens strains was evaluated. The highest beta-1,3-glucanase activity, siderophore production, SA production and HCN production were recorded with PfMDU2. A significant relationship between the antagonistic potential of P. fluorescens against R. solani and its level of beta-1,3-glucanase, SA and HCN was observed.  相似文献   

7.
AIMS: The aim of the present investigation was to determine the influence of Rhizoctonia solani and its pathogenicity factor on the production of nematicidal agent(s) by Pseudomonas fluorescens strain CHA0 and its GM derivatives in vitro and nematode biocontrol potential by bacterial inoculants in tomato. METHODS AND RESULTS: One (Rs7) of the nine R. solani isolates from infected tomato roots inhibited seedling emergence and caused root rot in tomato. Thin layer chromatography revealed that culture filtrates of two isolates (Rs3 and Rs7) produced brown spots at Rf-values closely similar to synthetic phenylacetic acid (PAA), a phytotoxic factor. Filtrates from isolate Rs7, amended with the growth medium of P. fluorescens, markedly repressed nematicidal activity and PhlA'-'LacZ reporter gene expression of the bacteria in vitro. On the contrary, isolate Rs4 enhanced nematicidal potential of a 2,4-diacetylphloroglucinol overproducing mutant, CHA0/pME3424, of P. fluorescens strain CHA0 in vitro. Therefore, R. solani isolates Rs4 and Rs7 were tested more rigorously for their potential to influence biocontrol effectiveness of the bacterial agents. Methanol extract of the culture filtrates of PAA-producing isolate Rs7 resulting from medium amended with phenylalanine enhanced fungal repression of the production of nematicidal agents by bacteria, while amendments with zinc or molybdenum eliminated such fungal repression, thereby restoring bacterial potential to cause nematode mortality in vitro. A pot experiment was carried out, 3-week-old tomato seedlings were infested with R. solani isolates Rs4 or Rs7 and/or inoculated with Meloidogyne incognita, the root-knot nematode. The infested soil was treated with aqueous cell suspensions (10(8) CFU) of P. fluorescens strain CHA0 or its GM derivatives or left untreated (as a control). Observations taken 45 days after nematode inoculation revealed that, irrespective of the bacterial treatments, galling intensity per gram of fresh tomato roots was markedly higher in soil amended with isolate Rs4 than in Rs7-amended soils. Soil amendments with R. solani and the bacterial antagonists resulted in substantial reductions of the number of galls per gram of root. These results are contradictory to those obtained under in vitro conditions where culture filtrates of PAA-positive Rs7 repressed the production of nematicidal compounds. Plants grown in Rs7-amended soils, with or without bacterial inoculants, had lesser shoot and root weights than plants grown in nonamended or Rs4-amended soils. Moreover, amendments with Rs7 substantially retarded root growth and produced necrotic lesions that reduced the number of entry sites for invasion and subsequent infection by nematodes. Populations of P. fluorescens in the tomato rhizosphere were markedly higher in Rs7-amended soils. CONCLUSIONS: PAA-producing virulent R. solani drastically affects the potential of P. fluorescens to cause death of M. incognita juveniles in vitro and influences bacterial effectiveness to suppress nematodes in tomato roots. SIGNIFICANCE AND IMPACT OF THE STUDY: As most agricultural soils are infested with root-infecting fungi, including R. solani, it is likely that some PAA-producing isolates of the fungus may also be isolated from such soils. The inhibitory effect of PAA-producing R. solani on the biosynthesis of nematicidal agent(s) critical in biocontrol may reduce or even eliminate the effectiveness of fluorescent pseudomonads against root-knot nematodes, both in nursery beds and in field conditions. Introduction of bacterial inoculants, for the control of any plant pathogen, should be avoided in soils infested with PAA-producing R. solani. Alternatively, the agents could be applied together with an appropriate quantity of fungicide or chemicals such as zinc to create an environment more favourable for bacterial biocontrol action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号