首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of front bridged tricyclic 3beta-(4'-halo or 4'-methyl)phenyltropanes bearing methylene or carbomethoxymethylene on the bridge to the 2beta-position was synthesized, and their binding affinities were determined in cells transfected to express human norepinephrine transporter (NET), serotonin transporter (SERT), and dopamine transporter (DAT) via competition binding assays. All compounds studied in this series exhibit a moderate to high potency at all three transporters with SERT or DAT selectivity. 3beta-(4'-iodo)phenyltropane bearing methylene on the bridge to the 2beta-position (24) presents a particularly attractive pharmacological profile, with very high SERT affinity (K(i) = 0.09 nM) and selectivity versus NET (65-fold) and DAT (94-fold).  相似文献   

2.
A series of 16 new 2beta-carbomethoxy-3beta-[aryl or heteroaryl]phenyltropane derivatives was synthesized and evaluated for binding to monoamine transporters. Most of the compounds exhibited nanomolar affinity for the serotonin transporter (SERT). Four compounds presented a particularly attractive pharmacological profile, with very high SERT affinity (K(i) 0.15-0.5 nM) and selectivity versus the dopamine transporter of 25- to 77-fold.  相似文献   

3.
A series of N-aromatic, N-heteroaromatic, and oxygenated N-phenylpropyl derivatives of 1-(2-benzhydryloxyethyl)-piperazine and 1-[2-[bis-(4-fluorophenyl)methoxy]ethyl]piperazine, analogues of GBR 12909 (1a) and 12935 (1b), was synthesized and examined for their dopamine (DAT) and serotonin (SERT) transporter binding properties. One of these compounds, racemic 3-[4-(2-benzhydryloxyethyl)piperazin-1-yl]-1-(3-fluorophenyl)-propan-1-ol (33), had DAT affinity as good as, or better than, GBR 12909 and 12935, and was more selective for DAT over SERT than the GBR compounds. Both trans- (43) and cis- (47) (+/-)-2-(4-[2-[bis-(4-fluorophenyl)-methoxy]ethyl]piperazin-1-ylmethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-1-ol had relatively good SERT selectivity and, as well, showed high affinity for SERT.  相似文献   

4.
A series of 2-(3,4-dichlorophenyl)-cyclopent-1-enyl carboxylic acid esters and amides were prepared and tested for binding to the DAT, SERT, and NET. The achiral compounds were easily attained and found to inhibit DAT binding with K(i)-values ranging from 0.095 to 0.00003 mM. Among the compounds tested 2-(3,4-dichlorophenyl)-cyclopent-1-enyl carboxylic acid 2-methylphenyl ester was found to be highly selective with SERT/DAT>7000; NET/DAT>1700, K(i)=60 nM.  相似文献   

5.
A series of milnacipran analogs containing a heteroaromatic group were synthesized and studied as monoamine transporter inhibitors. Many compounds exhibited higher potency than milnacipran at NET and NET/SERT with no significant change in lipophilicity. For example, compound R-26f was about 10-fold more potent than milnacipran with IC(50) values of 8.7 and 26nM at NET and SERT, respectively.  相似文献   

6.
A series of 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-(substituted benzyl) piperidines with substituents at the ortho and meta positions in the aromatic ring of the N-benzyl side chain were synthesized and their affinities and selectivities for the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET) were determined. One analogue, 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(2-trifluoromethylbenzyl)piperidine (the C(2)-trifluoromethyl substituted compound), has been found to act as an allosteric modulator of hSERT binding and function. It had little affinity for any of the transporters. Several compounds showed affinity for the DAT in the low nanomolar range and displayed a broad range of SERT/DAT selectivity ratios and very little affinity for the NET. The pharmacological tools provided by the availability of compounds with varying transporter affinity and selectivity could be used to obtain additional information about the properties a compound should have to act as a useful pharmacotherapeutic agent for cocaine addiction and help unravel the pharmacological mechanisms relevant to stimulant abuse.  相似文献   

7.
A series of novel fluoroalkyl-containing tropane derivatives (6-8, 10-14, 17, and 18) were synthesized from cocaine. Novel compounds were evaluated for affinity and selectivity in competitive radioligand binding assays selective for cerebral serotonin (5-HT), dopamine (DA), and norepinephrine (NE) transporters (SERT, DAT, and NET). The nortropane-fluoroalkyl esters (7, 10, 11) were most potent for SERT (K(i): 0.18, 0.24, and 0.30 nM, respectively). Tosylate esters 17 and 18, synthesized as precursors for [(18)F]-labeled, Positron Emission Tomography (PET) imaging agents, also showed high affinity for DAT.  相似文献   

8.
In order to predict affinity of new diphenylsulfides for the serotonin transporter (SERT), a molecular modeling model was used to compare potential binding affinity of new compounds with known potent ligands. The aim of this study is to identify a suitable PET radioligand for imaging the SERT, new derivatives, and their precursors for a C-11 or F-18 radiolabeling, were synthesized. Two fluorinated derivatives displayed good in vitro affinity for the SERT (K(i)=14.3+/-1 and 10.1+/-2.7 nM) and good selectivity toward the other monoamine transporters as predicted by the docking study.  相似文献   

9.
Quantum dot conjugates of compounds capable of inhibiting the serotonin transporter (SERT) could form the basis of fluorescent probes for live cell imaging of membrane bound SERT. Additionally, quantum dot-SERT antagonist conjugates may be amenable to fluorescence-based, high-throughput assays for this transporter. This Letter describes the synthesis of SERT-selective ligands amenable to conjugation to quantum dots via a biotin-streptavidin binding interaction. SERT selectivity and affinity were incorporated into the ligand via a tetrahydropyridine or cyclohexylamine derivative and the affinity of these compounds for SERT was measured by their ability to produce SERT-dependent currents in Xenopus laveis oocytes.  相似文献   

10.
The synthesis and structure–activity relationships of 8-substituted-3-[2-(diarylmethoxyethylidenyl)]-8-azabicyclo[3.2.1]octane derivatives were investigated at the dopamine transporter (DAT), the serotonin transporter (SERT) and norepinephrine transporter (NET). The rigid ethylidenyl-8-azabicyclic[3.2.1]octane skeleton imparted modestly stereoselective binding and uptake inhibition at the DAT. Additional structure–activity studies provided a transporter affinity profile that was reminiscent of the structure–activity of GBR 12909. From these studies, the 8-cyclopropylmethyl group has been identified as a unique moiety that imparts high SERT/DAT selectivity. In this study the 8-cyclopropylmethyl derivative 22e (DAT Ki of 4.0 nM) was among the most potent compounds of the series at the DAT and was the most DAT selective ligand of the series (SERT/DAT: 1060). Similarly, the 8-chlorobenzyl derivative 22g (DAT Ki of 3.9 nM) was found to be highly selective for the DAT over the NET (NET/DAT: 1358).  相似文献   

11.
A series of 3-[2-(diarylmethoxyethylidene)]-8-alkylaryl-8-azabicyclo[3.2.1]octanes was synthesized and the binding affinities of the compounds were determined at the dopamine and serotonin transporters. The 8-phenylpropyl analogues 8a (K(i)=4.1 nM) and 8b (K(i)=3.7 nM) were the most potent compounds of the series with binding affinities 3 times greater than GBR-12909. In addition, 8a (SERT/DAT=327) was over 300-fold more selective for the dopamine transporter than the serotonin transporter.  相似文献   

12.
The 3'-iodo positional isomer of 2-beta-carbomethoxy-3-beta-(4'-iodophenyl)tropane (beta-CIT) and other 3'-substituted analogs were synthesized and evaluated for binding to monoamine transporters in rat forebrain and membranes of cell lines selectively expressing human transporter genes. All 3'-substituted compounds displayed affinity for both serotonin (SERT) and dopamine (DAT), but much less for norepinephrine transporters (NET), with selectivity for rat (r) or human (h) SERT over NET, but only 3'-iodo-substituted phenyltropanes showed selectivity for SERT versus DAT. The 3'-iodo, N-methyl analog of beta-CIT (7) displayed 29-fold selectivity and high affinity for hSERT (K(i) =9.6 nM) over hDAT (K(i) =279 nM), and its nor-congener (8) showed even higher hSERT potency (K(i) =1.2 nM) and selectivity over DAT (415-fold).  相似文献   

13.
A series of benzyl esters of meperidine and normeperidine were synthesized and evaluated for binding affinity at serotonin, dopamine and norepinephrine transporters. The 4-methoxybenzyl ester 8b and 4-nitrobenzyl ester 8c in the meperidine series and 4-methoxybenzyl ester 14a in the normeperidine series exhibited low nanomolar binding affinities at the SERT (K(i) values <2nM) and high SERT selectivity (DAT/SERT >1500 and NET/SERT >1500).  相似文献   

14.
A series of racemic 6-hydroxy and carboalkoxy substituted-4('),4"-difluorobenztropines was synthesized and evaluated for binding at the dopamine (DAT), the serotonin (SERT), the norepinephrine (NET) transporters, and the muscarinic M1 receptor. Each of the analogues displaced [(3)H]WIN 35,428 (DAT) with a range of affinities from 5.81 to 175 nM and [(3)H]pirenzepine (M1), with a range of affinities ( K(i)= -8430 nM). Binding affinities at the SERT and the NET were generally low.  相似文献   

15.
A series of quipazine derivatives, previously synthesized to probe the 5-HT(3) receptor, was evaluated for its potential interaction with serotonin transporter (SERT). Some of them show nanomolar affinity for the rodent SERT comparable to or slightly higher than quipazine or N-methylquipazine. Subsequently a candidate was selected on the basis of its SERT affinity and submitted to a molecular manipulation of the basic moiety. The structure-affinity relationships obtained provided information on the role of the fused benzene ring of quipazine in the interaction with the SERT binding site and on the stereoelectronic requirements for the interaction of both the heteroaromatic component and the basic moiety. Moreover, the comparison of the structure-affinity relationships obtained in the present work with those concerning the interaction of these heteroarylpiperazine derivatives with 5-HT3 receptor suggested some molecular determinants of the selectivity SERT/5HT3 receptor.  相似文献   

16.
Six new (S,S)-enantiomers of reboxetine derivatives were synthesized and their binding affinities were determined via competition binding assays in cells expressing the human norepinephrine transporter (NET), serotonin transporter (SERT) or dopamine transporter (DAT). All six compounds prepared exhibit high affinity for the NET (K(i)相似文献   

17.
The serotonin transporter (SERT) belongs to a family of sodium chloride-dependent transporters responsible for uptake of amino acids and biogenic amines from extracellular spaces. SERT represents the main pharmacological target in the treatment of several clinical conditions, including depression and anxiety. Serotonin-selective reuptake inhibitors and tricyclic antidepressants are the most predominantly prescribed drugs in the treatment of depression. In addition to antidepressants also psychostimulants, like cocaine and amphetamines, are important SERT antagonists. In the present study, we report the cloning and characterization of chicken SERT. Although the uptake kinetic was very similar to human SERT, the pharmacological profiles differed considerably for the two species. We find that chicken SERT is capable of discriminating between different serotonin-selective reuptake inhibitors; thus, the potency of S-citalopram and paroxetine is reduced more than 40-fold. A cross-species chimera strategy was undertaken and followed by species-scanning mutagenesis. Differences in pharmacological profiles were tracked to amino acid residues 169, 172, and 586 in human SERT. Structure-activity studies on structurally related compounds indicated that species divergences in drug sensitivity between human and chicken SERT were arising from differences in coordination or recognition of an important aminomethyl pharmacophoric substructure, which is shared by all high affinity antidepressants. Consequently, we suggest that Ala(169) and Ile(172) of human SERT are important residues in sensing the N-methylation state of SERT antagonists.  相似文献   

18.
The serotonin transporter (SERT), a member of the solute carrier 6 family, is responsible for reuptake of the monoamine neurotransmitter serotonin (5-hydroxytryptamine) from the synaptic cleft on the neural cells, and a vital target for several antidepressants. To investigate biophysical studies of this pharmacologically relevant transporter, we developed a mammalian expression system with tetracycline-inducible HEK293 cells using synthetic human SERT genes produced by PCR-based self-assembly method. Codon-optimization of this de novo constructed genes and construction of stable cell lines improved expression 3.5-fold and single-step immunoaffinity purification with FLAG-epitope tag yielded around one milligram functional SERT per liter culture medium assessed by [(3)H] imipramine ligand binding. Some characterizations including electrospray ionization MS/MS analysis, subcellular localization and cellular-uptake assay demonstrated that expressed human SERT was properly expressed, folded and fully functional. The long cytosolic N-terminal of SERT was predicted as containing 'intrinsically disordered region (IDR)' (~85 residues) by DISOPRED2 program. We engineered this salient region by step-wise truncation and ligand binding assay determined that dissociation constant for a series of de novo designed truncation constructs was close to the one for full-length wild type SERT. Our expression platform using synthetic codon-optimized gene and mammalian stable cell lines is feasible to produce milligram-scale functional membrane transporter for further biophysical and biochemical studies.  相似文献   

19.
Cocaine is a potent stimulant of the central nervous system. Its reinforcing and stimulant properties have been associated with inhibition of the dopamine transporter (DAT) on presynaptic neurons. In the search for medications for cocaine abuse, we have prepared 2-carbomethoxy-3-aryl-8-thiabicyclo[3.2.1]octane analogues of cocaine. We report that this class of compounds provides potent and selective inhibitors of the DAT and SERT. The selectivity resulted from reduced activity at the SERT. The 3beta-(3,4-dichlorophenyl) analogue inhibits the DAT and SERT with a potency of IC(50)=5.7 nM and 8.0 nM, respectively. The 3-(3,4-dichlorophenyl)-2,3-unsaturated analogue inhibits the DAT potently (IC(50)=4.5 nM) and selectively (>800-fold vs SERT). Biological enantioselectivity of DAT inhibition was limited for both the 3-aryl-2,3-unsaturated and the 3alpha-aryl analogues (2-fold), but more robust (>10-fold) for the 3beta-aryl analogues. The (1R)-configuration provided the eutomers.  相似文献   

20.
A series of milnacipran analogs were synthesized and studied as monoamine transporter inhibitors, and several potent compounds with moderate lipophilicity were identified from the 1S,2R-isomers. Thus, 15l exhibited IC(50) values of 1.7nM at NET and 25nM at SERT, which were, respectively, 20- and 13-fold more potent than 1S,2R-milnacipran 1-II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号