首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ploidy of the thymus was studied in C57B1/Ka mice irradiated with 4 weekly X-Ray doses of 1.75 Gy. The determination of nuclear DNA content was performed by flow cytometry of intact thymocytes labeled with propidium iodide in presence of a mixture of chicken and rainbow trout red blood cells as internal reference standards. The method has been tested by detecting the sex difference in DNA content of G0/G1 of normal thymic mouse cells. The mean value was 2.9% higher in female mice. The thymus of almost 60% of irradiated male mice present a slight hypoploidy of 2.6% one month after the last irradiation.  相似文献   

2.
γH2AX焦点(foci)被普遍当做DNA双链断裂(DSB)损伤的分子标志物.为探 讨细胞周期进程相关的H2AX磷酸化规律特征,采用胸腺嘧啶双阻滞结合噻氨酯哒唑(nocodazole)的后续处理,将HeLa细胞同步于有丝分裂的前中期.然后,用流式细胞仪检测细胞周期、Western印迹和免疫荧光法,观察γH2AX表达和γH2AX焦点的形成.结果显示,细胞进入G2/M期和有丝分裂过程中,γH2AX水平显著增加 ;在无DNA DSB发生的情况下,部分M期细胞中也存在大量的γH2AX焦点.随着细 胞完成有丝分裂从M期退出再进入G1期,γH2AX的表达水平逐渐降低.这种 γH2AX表达变化特征与G2/M期密切关联的PLK1和Cyclin B1的表达规律相类似. 在4 Gy大剂量照射下,HeLa细胞于照后8 到12 h出现明显的G2/M期阻滞.γH2AX 焦点数在照后1 h达高峰,随后降低,照后8 h又上升,出现了第2个峰值.与之不同的是,在1 Gy低剂量照射下,细胞的G2/M期阻滞微弱,γH2AX焦点数在照后 0.5 h最高,随后下降,且无反弹,符合DNA DSB的修复动力学特征.因此,将γ H2AX当做DNA DSB分子标志物时,还需要考虑细胞周期变化的影响.γH2AX适合 作为1 Gy以下照射的DNA双链断裂损伤的分子标志.  相似文献   

3.
After irradiation with 4 Gy of X rays the nuclear protein and DNA contents (to determine cell-cycle position) of HeLa cells were determined by isolating nuclei and staining them with the fluorescent dyes fluorescein isothiocyanate (FITC) for protein and propidium iodide (PI) for DNA. Immediately following irradiation there was no change in the shape of the bivariate (FITC-PI) histogram. At 3 and 4 h after irradiation the region of the histogram which corresponds to mitotic cells had disappeared. At 6 h nuclei reappeared in this region. The maximum rearrangement of the histogram (i.e., maximum accumulation of cells in G2 with minimum cells in G1) occurred at 10.5 h after irradiation, which is later than the time required for mitotic recovery. No change in nuclear protein content of cells in G1 and S was observed. However, beginning at 4 h after irradiation and continuing throughout the period of observation, a small (10-20%) but significant increase in nuclear protein content was observed for nuclei isolated from cells in G2. The increase in nuclear protein content may be part of the mechanism of G2 arrest and/or may reflect unbalanced growth.  相似文献   

4.
Irradiation of mice with doses of 2 and 4 Gy induced extensive chromatin degradation in the thymocytes within 6 hours accompanied by an increase in polydeoxynucleotide (PDN) content (36 and 42 times, respectively). Fifteen hours after irradiation the PDN level was considerably lower, however, still being 4.7 and 14 times the control values after doses of 2 and 4 Gy. The PDN content in control LS/BL lymphosarcoma cells was similar as that in the thymocytes of non-irradiated mice. Unlike in the thymocytes, irradiation of lymphosarcoma cells did induce no statistically significant increase in the PDN level 6 and 15 hours after the irradiation, respectively. It has been reported previously (Matyásová et al. 1973) that chromatin of LS/BL cells degraded similarly as that in the irradiated thymocytes. The results of the present experiments thus provide additional evidence for changes of LS/BL cell properties due to long term cultivation. These cells, however, are still able to react by chromatin fragmentation to nitrogen mustard treatment.  相似文献   

5.
Sensitivity to X-ray-induced G2 arrest was compared between ataxia telangiectasia (AT) lymphoblastoid cells and normal human cells. Flow cytometrical analysis of cells following X-ray irradiation revealed that the fraction of cells with 4n DNA content was greater in AT cells than in normal cells as previously reported by other investigators. However, the other parameters for cell-cycle progression kinetics including mitotic indices, cumulative mitotic indices and cumulative labelled mitotic indices indicated that X-ray-induced G2 arrest as a function of dose in AT cells was indistinguishable from that in normal cells. Moreover, no significant difference in cell viability was noted between AT and normal cells until 48 h following X-irradiation up to 2.6 Gy, although X-irradiated AT cells, compared to normal cells, showed a significantly decreased survival in terms of cell multiplication in growth medium and colony formation in soft agar. These data collectively suggest that the greater accumulation of AT cells with 4n DNA content in flow cytometry cannot be attributed to more stringent irreversible blockage of cell-cycle progression at the G2 phase and eventual cell death there. The possible reasons for this greater accumulation are discussed.  相似文献   

6.
TAB182是一个端锚聚合酶1(tankyrase 1)结合蛋白,它在体外能够被tankyrase 1发生二磷酸腺苷核糖基化(PAR)修饰,其生物学功能目前尚不明确.本研究发现,TAB182蛋白水平受电离辐射诱导表达,HeLa细胞经过4 Gy照射处理时,TAB182在2 h表达含量最高; 经过不同剂量照射处理,2 h后2 Gy、4 Gy照射剂量组HeLa细胞中TAB182的表达有明显增加. 通过shRNA沉默HeLa细胞中TAB182基因表达,导致其对4 Gy及以下剂量 辐射的敏感性增加,但对8 Gy大剂量照射的敏感性没有明显变化. 与对照组相比,4 Gy照射诱发TAB182基因沉默细胞的G2/M期阻滞时间显著延长.抑制TAB182表达导致细胞中DNA损伤反应蛋白DNA PKcs、ATM、Chk2的表达水平显著降低. 实验结果提示,TAB182蛋白参与放射DNA损伤信号反应和调控细胞周期G2/M进程.  相似文献   

7.
BACKGROUND: Majority of hematopoietic cells die by apoptosis after irradiation with ionizing radiation. In present study it is shown that human promyelocytic leukemia HL-60 cells can undergo two different types of apoptosis, premitotic and postmitotic. METHODS: HL-60 cells were irradiated with doses 8 and 20 Gy. For apoptosis detection APO2.7 antigen (mitochondrial membrane specific protein) expression without and with permeabilization by digitonin was used. This method was compared with flow-cytometric analysis of cell light scattering properties and determination of subG1 DNA. RESULT: Cells irradiated with high dose (20 Gy) died rapidly by premitotic apoptosis (interphase death) from all phases of cell cycle. 2 hours after irradiation cells with subdiploid DNA content and cells stained by APO2.7 after digitonin permeabilization appeared. After 6 hours 40% of cells were apoptotic, nonapoptotic cells were mainly in G1-phase. Lower dose (8 Gy) after 6 hours of irradiation caused accumulation of cells in S-phase. After 24 hours majority of cells was in G2-phase and apoptotic cells appeared (subG1 peak, APO2.7 with permeabilization). CONCLUSION: Data presented herein indicate that mitochondrial membrane protein-specific antibody APO2.7 after permeabilization is a useful marker for detection of early apoptotic cells dying by premitotic and postmitotic apoptosis.  相似文献   

8.
It is established, that low doses of X-ray irradiation have affected activation of lipid peroxidation (LPO) in immunocompetent cells of the spleen and thymus. The amount of malonic dialdehyde (MDA) in lymphocytes of spleen and thymocytes increases 2 times twenty-four hours after animals' irradiation by X-rays in a dose of 0.5 Gy; when a dose grows to 1.0 Gy, the MDA content in the spleen lymphocytes increases from the 1st to the 6th days and in thymocytes from the 1st to the 3d days reaching its maximum at the 3d day. MDA accumulation in the immunocompetent cells of irradiated animals varies depending on the method of lipid peroxidation initiation.  相似文献   

9.
Root growth, G2 length, and the frequency of aberrant mitoses and apoptotic nuclei were recorded after a single X-ray irradiation, ranging from 2.5 to 40 Gy, in Allium cepa L. root meristematic cells. After 72 h of recovery, root growth was reduced in a dose-dependent manner from 10 to 40 Gy, but not at 2.5 or 5 Gy doses. Flow cytometry plus TUNEL (TdT-mediated dUTP nick end labeling) showed that activation of apoptosis occurred only after 20 and 40 Gy of X-rays. Nevertheless, irrespective of the radiation dose, conventional flow cytometry showed that cells accumulated in G2 (4C DNA content). Simultaneously, the mitotic index fell, though a mitotic wave appeared later. Cell accumulation in G2 was transient and partially reversed by caffeine, thus it was checkpoint-dependent. Strikingly, the additional G2 time provided by this checkpoint was never long enough to complete DNA repair. Then, in all cases, some G2 cells with still-unrepaired DNA underwent checkpoint adaptation, i.e., they entered into the late mitotic wave with chromatid breaks. These cells and those produced by the breakage of chromosomal bridges in anaphase will reach the G1 of the next cell cycle unrepaired, ensuring the appearance of genome instability.  相似文献   

10.
11.
Apoptosis and cell cycle progression in HL60 cells irradiated in an acidic environment were investigated. Apoptosis was determined by TUNEL staining, PARP cleavage, DNA fragmentation, and flow cytometry. The majority of the apoptosis that occurred in HL60 cells after 4 Gy irradiation took place after G(2)/M-phase arrest. When irradiated with 12 Gy, a fraction of the cells underwent apoptosis in G(1) and S phases while the rest of the cells underwent apoptosis in G(2)/M phase. The apoptosis caused by 4 and 12 Gy irradiation was transiently suppressed in medium at pH 7.1 or lower. An acidic environment was found to perturb progression of irradiated cells through the cell cycle, including progression through G(2)/ M phase. Thus it was concluded that the suppression of apoptosis in the cells after 4-12 Gy irradiation in acidic medium was due at least in part to a delay in cell cycle progression, particularly the prolongation of G(2)/M-phase arrest. Irradiation with 20 Gy indiscriminately caused apoptosis in all cell cycle phases, i.e. G(1), S and G(2)/M phases, rapidly in neutral pH medium and relatively slowly in acidic pH medium. The delay in apoptosis in acidic medium after 20 Gy irradiation appeared to result from mechanisms other than prolonged G(2)/ M-phase arrest.  相似文献   

12.
Chinese hamster ovary cells were cultured for up to 280 hr in medium containing 1.75 mcg/ml cytochalasin B. The distribution of the number of nuclei per cell in unirradiated cultures on the 6th day was unimodal with some cells containing 27 or more nuclei. The DNA content distribution was in contrast polymodal with the means of the two terminal major peaks occurring at approximately 40 and 80 units of DNA content (antimodes at 29 and 58 units), where 1 unit is the content of untreated G1 cells. Irradiation (gamma, 137-Cs) at doses up to 10 Gy caused an exponential reduction in the proportion of plated cells able to reach high nucleus- or DNA-contents. The reduction due to 5 Gy was stable at least up to 280 hr in culture. The accumulation of total DNA in the culture was well-fitted by a Gompertz function, with little further increase after 230 hr when the average DNA content per cell reached about 90 units.  相似文献   

13.
Young adult CBA/H mice were exposed to graded doses of whole-body irradiation with either fast fission neutrons or 300 kVp X rays at center-line dose rates of 0.1 and 0.3 Gy/min, respectively. Dose-response curves were determined at Days 2 and 5 after irradiation for the total thymic cell survival and for the survival of thymocytes defined by monoclonal anti-Thy-1, -Lyt-1, -Lyt-2, and -T-200 antibodies as measured by flow cytofluorometric analysis. Cell dose-response curves of thymocytes show, 2 days after irradiation, a two-component curve with a radiosensitive part and a part refractory to irradiation. The radiosensitive part of the dose survival curve of the Lyt-2+ cells, i.e., mainly cortical cells, has a D0 value of about 0.26 and 0.60 Gy for neutrons and X rays, respectively, whereas that of the other cell types has corresponding D0 values of about 0.30 and 0.70 Gy. The radiorefractory part of the dose-response curves cannot be detected beyond 5 days after irradiation. At that time, the Lyt-2+ cells are again most radiosensitive with a D0 value of 0.37 and 0.99 Gy for neutrons and X rays, respectively. The other measured cell types have corresponding D0 values of about 0.47 Gy. The fission neutron RBE values for the reduction in the thymocyte populations defined by either monoclonal anti-Thy-1, -Lyt-1, -Lyt-2, or -T-200 antibodies to 1.0% vary from 2.6 to 2.8. Furthermore, the estimated D0 values of the Thy-1-, T-200- intrathymic precursor cells which repopulate the thymus during the bone marrow independent phase of the biphasic thymus regeneration after whole-body irradiation are 0.64-0.79 Gy for fission neutrons and 1.32-1.55 Gy for X rays.  相似文献   

14.
The rat broncho-alveolar macrophages, subjected to gamma-irradiation, were incubated for 4 hours with irradiated (4 Gy) thymocytes. Following the total 24 hour incubation, some morphological features of macrophages were revealed in addition to their influence on survival, autologous rosetting and mitotic index of intact thymocytes. The increase in macrophage spreading was shown which was dose-dependent in the 1 to 4 Gy scale. Enhanced viability of thymocytes was revealed in the presence of macrophages irradiated at the dose of 1-2 Gy. Addition of 24 hour cultures of intact or irradiated macrophages elicited a significant decrease in rosette-forming capacity among thymocytes. Gamma-irradiation of 2 to 4 Gy inhibited the ability of macrophages to suppress the mitotic activity of thymic cells. A possibility of postradiational modification of some specific functions and properties of macrophages, including their thymotropic effects, is discussed.  相似文献   

15.
The repair of DNA damage produced by 137Cs gamma irradiation was measured with a preparation from Micrococcus luteus containing DNA damage-specific endonucleases in combination with alkaline elution. The frequency of these endonuclease sensitive sites (ESS) was determined after 54 or 110 Gy of oxic irradiation in normal and xeroderma pigmentosum (XP) fibroblasts from complementation groups A, C, D, and G. Repair was rapid in all cell strains with greater than 50% repair after 1.5 h of repair incubation. At later repair times, 12-17 h, more ESS remained in XP than in normal cells. The frequency of excess ESS in XP cells was approximately 0.04 per 10(9) Da of DNA per Gy which was equivalent to 10% of the initial ESS produced. The removal of ESS was comparable in XP cells with normal radiosensitivity and XP3BR cells which have been reported to be moderately radiosensitive.  相似文献   

16.
The Comet assay (microgel electrophoresis) was used to study DNA damage in Raji cells, a B-lymphoblastoid cell line, after treatment with different doses of neutrons (0.5 to 16 Gy) or gamma rays (1.4 to 44.8 Gy). A better growth recovery was observed in cells after gamma-ray treatments compared with neutron treatments. The relative biological effectiveness (RBE) of neutron in cell killing was determined to be 2.5. Initially, the number of damaged cells per unit dose was approximately the same after neutron and gamma-ray irradiation. One hour after treatment, however, the number of normal cells per unit dose was much lower for neutrons than for gamma rays, suggesting a more efficient initial repair for gamma rays. Twenty-four hours after treatment, the numbers of damaged cells per unit dose of neutrons or gamma rays were again at comparable level. Cell cycle kinetic studies showed a strong G2/M arrest at equivalent unit dose (neutrons up to 8 Gy; gamma rays up to 5.6 Gy), suggesting a period in cell cycle for DNA repair. However, only cells treated with low doses (up to 2 Gy) seemed to be capable of returning into normal cell cycle within 4 days. For the highest dose of neutrons, decline in the number of normal cells seen at already 3 days after treatment was deeper compared with equivalent unit doses of gamma rays. Our present results support different mechanisms of action by these two irradiations and suggest the generation of locally multiply damaged sites (LMDS) for high linear energy transfer (LET) radiation which are known to be repaired at lower efficiency.  相似文献   

17.
Most cell lines that lack functional p53 protein are arrested in the G2 phase of the cell cycle due to DNA damage. It was previously found that the human promyelocyte leukemia cells HL-60 (TP53 negative) that had been exposed to ionizing radiation at doses up to 10 Gy were arrested in the G2 phase for a period of 24 h. The radioresistance of HL-60 cells that were exposed to low dose-rate gamma irradiation of 3.9 mGy/min, which resulted in a pronounced accumulation of the cells in the G2 phase during the exposure period, increased compared with the radioresistance of cells that were exposed to a high dose-rate gamma irradiation of 0.6 Gy/min. The D0 value (i.e. the radiation dose leading to 37% cell survival) for low dose-rate radiation was 3.7 Gy and for high dose-rate radiation 2.2 Gy. In this study, prevention of G2 phase arrest by caffeine (2 mM) and irradiation of cells with low dose-rate irradiation in all phases of the cell cycle proved to cause radiosensitization (D0=2.2 Gy). The irradiation in the presence of caffeine resulted in a second wave of apoptosis on days 5–7post-irradiation. Caffeine-induced apoptosis occurring later than day 7 post-irradiation is postulated to be a result of unscheduled DNA replication and cell cycle progress.  相似文献   

18.
The two L5178Y (LY) sublines bear a heterozygous Tp53 mutation that affects its transactivation function. LY-S (radiation-sensitive) cells are deficient in double strand break (DSB) repair by non-homologous end-joining (NHEJ) and do not express p21WAF1 (Cdkna1) either constitutively or after x-irradiation, in contrast to their radiation-resistant counterpart LY-R cells, which express p21WAF1 constitutively. Radiation-induced G2 arrest in LY-S cells is very long (11 h/Gy) but 2 mM caffeine treatment shortens it, decreases the fraction of G2 cells and increases the fraction of apoptotic cells. The treatment also increases the DNA damage that is estimated with the comet assay 18 h after irradiation with 5 Gy (ca. 23% of the initial value for x-rays and ca. 47% for x-rays plus caffeine). This indicates that either the repair has not been completed or the apoptotic DNA fragmentation has been initiated (or both). The same treatment applied to x-irradiated (5 Gy) LY-R cells (G2 arrest, 4 h/Gy) has no radiosensitising effect, induces no apoptosis and does not alter the amount of DNA damage left unrepaired (ca. 28%). The results are compatible with the assumption that inhibition of the Atm-dependent homologous recombination repair by caffeine, brings differential effects in LY sublines because of the defect of the alternative DNA repair system (NHEJ) in LY-S cells. Received: 23 June 2000 / Accepted: 5 January 2001  相似文献   

19.
The interphase death of irradiated rat thymocytes depends on their concentration during postirradiation incubation. The kinetics of pycnosis and cell death determined with the trypan blue exclusion test in the samples with the highest cell concentration (1-2 x 10(7) cells/ml) is consistent with the data available in the literature, whereas the samples with the lowest concentration (2 x 10(5) cells/ml) undergo almost no pycnosis and death after irradiation with doses up to 50 Gy. On the basis of these results, we suggest a new mechanism of interphase death involving an interaction between irradiated thymocytes and the fraction of thymus cells possessing cytocidal activity. The observed correlation between the cytocidal activity and interphase death of thymocytes from animals of different ages favors our mechanism. It was found that the inhibitors which prevent the conjugation of killer cells and their targets do not influence interphase death, while the substances which block the secretion of cytotoxic factors or their action on the target membrane do protect from interphase death. Thus we suggest that the irradiation activates the killer cells to secrete some cytotoxic factors which induce pycnosis and interphase death of thymocytes.  相似文献   

20.
The effect of the combined acute whole body exposure to cadmium chloride (0.5 mg Cd2+ per kg body weight of animals) and gamma-radiation (1 Gy) on the DNA damage induction in thymocytes and thymic cellularity of mice was studied. It has been shown that CdCl2 solution injection 0.5 h before irradiation reduces the quantity of single-strand DNA breaks and alkali-labile sites in thymocytes 48 h after injection compared to gamma-radiation action only. The observed effect is accompanied by a sharp decrease of the thymic cellularity compared with the separate effects of both cadmium ions and irradiation, which masks the overall genotoxic effect of combined exposure and gives an illusion of cadmiumL ions radioprotective action. Cadmium chloride injection 24 h before irradiation leads to a significant additive increase in the single-strand DNA breaks and alkali-labile sites number as compared to the separate effects of cadmium ions and irradiation alone. At the same time the decrease in the percentage of DNA tightly bound to proteins (DNA-protein cross-links) was noted in comparison with the action of gamma-radiation only. Statistically significant changes in thymic cellularity compared with separate effects of cadmium ions and irradiation were not found. Thus, our research has shown that under a combined action of cadmium ions and gamma-radiation on thymocytes in mice at the applied doses and exposure schemes the additive effects, rather than antagonism or radioprotective effects are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号