首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficiency and specificity of viral vectors are vital issues in gene therapy. Insertion of peptide ligands into the adeno-associated viral (AAV) capsid at receptor binding sites can re-target AAV2-derived vectors to alternative cell types. Also, the use of serotypes AAV8 and -9 is more efficient than AAV2 for gene transfer to certain tissues in vivo. Consequently, re-targeting of these serotypes by ligand insertion could be a promising approach but has not been explored so far. Here, we generated AAV8 and -9 vectors displaying peptides in the threefold spike capsid domain. These peptides had been selected from peptide libraries displayed on capsids of AAV serotype 2 to optimize systemic gene delivery to murine lung tissue and to breast cancer tissue in PymT transgenic mice (PymT). Such peptide insertions at position 590 of the AAV8 capsid and position 589 of the AAV9 capsid changed the transduction properties of both serotypes. However, both peptides inserted in AAV8 did not result in the same changes of tissue tropism as they did in AAV2. While the AAV2 peptides selected on murine lung tissue did not alter tropism of serotypes 8 and -9, insertion of the AAV2-derived peptide selected on breast cancer tissue augmented tumor gene delivery in both serotypes. Further, this peptide mediated a strong but unspecific in vivo gene transfer for AAV8 and abrogated transduction of various control tissues for AAV9. Our findings indicate that peptide insertion into defined sites of AAV8 and -9 capsids can change and improve their efficiency and specificity compared to their wild type variants and to AAV2, making these insertion sites attractive for the generation of novel targeted vectors in these serotypes.  相似文献   

2.
Adeno-associated viruses (AAVs) are being developed as gene therapy vectors, and their efficacy could be improved by a detailed understanding of their viral capsid structures. AAV serotype 8 (AAV8) shows a significantly greater liver transduction efficiency than those of other serotypes, which has resulted in efforts to develop this virus as a gene therapy vector for hemophilia A and familial hypercholesterolemia. Pseudotyping studies show that the differential tissue tropism and transduction efficiencies exhibited by the AAVs result from differences in their capsid viral protein (VP) amino acids. Towards identifying the structural features underpinning these disparities, we report the crystal structure of the AAV8 viral capsid determined to 2.6-A resolution. The overall topology of its common overlapping VP is similar to that previously reported for the crystal structures of AAV2 and AAV4, with an eight-stranded beta-barrel and long loops between the beta-strands. The most significant structural differences between AAV8 and AAV2 (the best-characterized serotype) are located on the capsid surface at protrusions surrounding the two-, three-, and fivefold axes at residues reported to control transduction efficiency and antibody recognition for AAV2. In addition, a comparison of the AAV8 and AAV2 capsid surface amino acids showed a reduced distribution of basic charge for AAV8 at the mapped AAV2 heparin sulfate receptor binding region, consistent with an observed non-heparin-binding phenotype for AAV8. Thus, this AAV8 structure provides an additional platform for mutagenesis efforts to characterize AAV capsid regions responsible for differential cellular tropism, transduction, and antigenicity for these promising gene therapy vectors.  相似文献   

3.
Adeno-associated virus (AAV) has attracted considerable interest as a vector for gene therapy owing its lack of pathogenicity and the wealth of available serotypes with distinct tissue tropisms. One of the most promising isolates for vector development, based on its superior gene transfer efficiency to the liver in small animals compared to AAV type 2 (AAV2), is AAV8. Comparison of the in vivo gene transduction of rAAV2 and rAAV8 in mice showed that single amino acid exchanges in the 3-fold protrusions of AAV8 in the surface loops comprised of residues 581 to 584 and 589 to 592 to the corresponding amino acids of AAV2 and vice versa had a strong influence on transduction efficiency and tissue tropism. Surprisingly, not only did conversion of AAV8 to AAV2 cap sequences increase the transduction efficiency and change tissue tropism but so did the reciprocal conversion of AAV2 to AAV8. Insertion of new peptide motifs at position 590 in AAV8 also enabled retargeting of AAV8 capsids to specific tissues, suggesting that these sequences can interact with receptors on the cell surface. However, a neutralizing monoclonal antibody that binds to amino acids (588)QQNTA(592) of AAV8 does not prevent cell binding and virus uptake, indicating that this region is not necessary for receptor binding but rather that the antibody interferes with an essential step of postattachment processing in which the 3-fold protrusion is also involved. This study supports a multifunctional role of the 3-fold region of AAV capsids in the infection process.  相似文献   

4.
Adeno-associated virus serotype 9 (AAV9) vectors show promise for gene therapy of a variety of diseases due to their ability to transduce multiple tissues, including heart, skeletal muscle, and the alveolar epithelium of the lung. In addition, AAV9 is unique compared to other AAV serotypes in that it is capable of surpassing the blood-brain barrier and transducing neurons in the brain and spinal cord. It has recently been shown that AAV9 uses galactose as a receptor to transduce many different cell types in vitro, as well as cells of the mouse airway in vivo. In this study, we sought to identify the specific amino acids of the AAV9 capsid necessary for binding to galactose. By site-directed mutagenesis and cell binding assays, plus computational ligand docking studies, we discovered five amino acids, including N470, D271, N272, Y446, and W503, which are required for galactose binding that form a pocket at the base of the protrusions around the icosahedral 3-fold axes of symmetry. The importance of these amino acids for tissue tropism was also confirmed by in vivo studies in the mouse lung. Identifying the interactions necessary for AAV9 binding to galactose may lead to advances in vector engineering.  相似文献   

5.
The adeno-associated viruses (AAVs) can package and deliver foreign DNA into cells for corrective gene delivery applications. The AAV serotypes have distinct cell binding, transduction, and antigenic characteristics that have been shown to be dictated by the capsid viral protein (VP) sequence. To understand the contribution of capsid structure to these properties, we have determined the crystal structure of AAV serotype 4 (AAV4), one of the most diverse serotypes with respect to capsid protein sequence and antigenic reactivity. Structural comparison of AAV4 to AAV2 shows conservation of the core beta strands (betaB to betaI) and helical (alphaA) secondary structure elements, which also exist in all other known parvovirus structures. However, surface loop variations (I to IX), some containing compensating structural insertions and deletions in adjacent regions, result in local topological differences on the capsid surface. These include AAV4 having a deeper twofold depression, wider and rounder protrusions surrounding the threefold axes, and a different topology at the top of the fivefold channel from that of AAV2. Also, the previously observed "valleys" between the threefold protrusions, containing AAV2's heparin binding residues, are narrower in AAV4. The observed differences in loop topologies at subunit interfaces are consistent with the inability of AAV2 and AAV4 VPs to combine for mosaic capsid formation in efforts to engineer novel tropisms. Significantly, all of the surface loop variations are associated with amino acids reported to affect receptor recognition, transduction, and anticapsid antibody reactivity for AAV2. This observation suggests that these capsid regions may also play similar roles in the other AAV serotypes.  相似文献   

6.
Hauck B  Xiao W 《Journal of virology》2003,77(4):2768-2774
Muscle is an attractive target for gene delivery because of its mass and because vectors can be delivered in a noninvasive fashion. Adeno-associated virus (AAV) has been shown to be effective for muscle-targeted gene transfer. Recent progress in characterization of AAV serotype 1 (AAV1) and AAV6 demonstrated that these two AAV serotypes are far more efficient in transducing muscle than is the traditionally used AAV2. Since all cis elements are identical in these vectors, the potential determinants for their differences in transducing muscle appear to be located within the AAV capsid proteins. In the present study, a series of AAV capsid mutants were generated to identify the major regions affecting AAV transduction efficiency in muscle. Replacement of amino acids 350 to 736 of AAV2 VP1 with the corresponding amino acids from VP1 of AAV1 resulted in a hybrid vector that behaved very similarly to AAV1 in vitro and in vivo in muscle. Characterization of additional mutants carrying smaller regions of the AAV1 VP1 amino acid sequence in the AAV2 capsid protein suggested that amino acids 350 to 430 of VP1 function as a major tissue tropism determinant. Further analysis showed that the heparin binding domain and the major antigenic determinants in the AAV capsid region were not necessary for the efficiency of AAV1 transduction of muscle.  相似文献   

7.
The human parvovirus adeno-associated virus type 2 (AAV2) has many features that make it attractive as a vector for gene therapy. However, the broad host range of AAV2 might represent a limitation for some applications in vivo, because recombinant AAV vector (rAAV)-mediated gene transfer would not be specific for the tissue of interest. This host range is determined by the binding of the AAV2 capsid to specific cellular receptors and/or co-receptors. The tropism of AAV2 might be changed by genetically introducing a ligand peptide into the viral capsid, thereby redirecting the binding of AAV2 to other cellular receptors. We generated six AAV2 capsid mutants by inserting a 14-amino-acid targeting peptide, L14, into six different putative loops of the AAV2 capsid protein identified by comparison with the known three-dimensional structure of canine parvovirus. All mutants were efficiently packaged. Three mutants expressed L14 on the capsid surface, and one efficiently infected wild-type AAV2-resistant cell lines that expressed the integrin receptor recognized by L14. The results demonstrate that the AAV2 capsid tolerates the insertion of a nonviral ligand sequence. This might open new perspectives for the design of targeted AAV2 vectors for human somatic gene therapy.  相似文献   

8.
For all adeno-associated virus (AAV) serotypes, 60 monomers of the Vp1, Vp2, and Vp3 structural proteins assemble via an unknown mechanism to form an intact capsid. In an effort to better understand the properties of the capsid monomers and their role in viral entry and infection, we evaluated whether monomers from distinct serotypes can be mixed to form infectious particles with unique phenotypes. This transcapsidation approach consisted of the transfection of pairwise combinations of AAV serotype 1 to 5 helper plasmids to produce mosaic capsid recombinant AAV (rAAV). All ratios (19:1, 3:1, 1:1, 1:3, and 1:19) of these mixtures were able to replicate the green fluorescent protein transgene and to produce capsid proteins. A high-titer rAAV was obtained with mixtures that included either serotype 1, 2, or 3, whereas an rAAV of intermediate titer was obtained from serotype 5 mixtures. Only mixtures containing the AAV4 capsid exhibited reduced packaging capacity. The binding profiles of the mixed-virus preparations to either heparin sulfate (HS) or mucin agarose revealed that only AAV3-AAV5 mixtures at the 3:1 ratio exhibited duality in binding. All other mixtures displayed either an abrupt shift or a gradual alteration in the binding profile to the respective ligand upon increase of a capsid component that conferred either HS or mucin binding. The transduction of cell lines was used to further evaluate the phenotypes of these transcapsidated virions. Three transduction profiles were observed: (i) small to no change regardless of ratio, (ii) a gradual increase in transduction consistent with titration of a second capsid component, or (iii) an abrupt increase in transduction (threshold effect) dependent on the specific ratios used. Interestingly, an unexpected synergistic effect in transduction was observed when AAV1 helper constructs were combined with type 2 or type 3 recipient helpers. Further studies determined that at least two components contributed to this observed synergy: (i) heparin-mediated binding from AAV2 and (ii) an unidentified enhancement activity from AAV1 structural proteins. Using this procedure of mixing different AAV helper plasmids to generate "cross-dressed" AAV virions, we propose an additional means of classifying new AAV serotypes into subgroups based on functional approaches to analyze AAV capsid assembly, receptor-mediated binding, and virus trafficking. Exploitation of this approach in generating custom-designed AAV vectors should be of significant value to the field of gene therapy.  相似文献   

9.
Adeno-associated virus (AAV) mediated gene expression is a powerful tool for gene therapy and preclinical studies. A comprehensive analysis of CNS cell type tropism, expression levels and biodistribution of different capsid serotypes has not yet been undertaken in neonatal rodents. Our previous studies show that intracerebroventricular injection with AAV2/1 on neonatal day P0 results in widespread CNS expression but the biodistribution is limited if injected beyond neonatal day P1. To extend these observations we explored the effect of timing of injection on tropism and biodistribution of six commonly used pseudotyped AAVs delivered in the cerebral ventricles of neonatal mice. We demonstrate that AAV2/8 and 2/9 resulted in the most widespread biodistribution in the brain. Most serotypes showed varying biodistribution depending on the day of injection. Injection on neonatal day P0 resulted in mostly neuronal transduction, whereas administration in later periods of development (24–84 hours postnatal) resulted in more non-neuronal transduction. AAV2/5 showed widespread transduction of astrocytes irrespective of the time of injection. None of the serotypes tested showed any microglial transduction. This study demonstrates that both capsid serotype and timing of injection influence the regional and cell-type distribution of AAV in neonatal rodents, and emphasizes the utility of pseudotyped AAV vectors for translational gene therapy paradigms.  相似文献   

10.
Although the remarkable versatility and efficacy of recombinant adeno-associated virus 2 (AAV2) vectors in transducing a wide variety of cells and tissues in vitro, and in numerous pre-clinical animal models of human diseases in vivo, have been well established, the published literature is replete with controversies with regard to the efficacy of AAV2 vectors in hematopoietic stem cell (HSC) transduction. A number of factors have contributed to these controversies, the molecular bases of which have begun to come to light in recent years. With the availability of several novel serotypes (AAV1 through AAV12), rational design of AAV capsid mutants, and strategies (self-complementary vector genomes, hematopoietic cell-specific promoters), it is indeed becoming feasible to achieve efficient transduction of HSC by AAV vectors. Using a murine serial bone marrow transplantation model in vivo, we have recently documented stable integration of the proviral AAV genome into mouse chromosomes, which does not lead to any overt hematological abnormalities. Thus, a better understanding of the AAV-HSC interactions, and the availability of a vast repertoire of novel serotype and capsid mutant vectors, are likely to have significant implications in the use of AAV vectors in high-efficiency transduction of HSCs as well as in gene therapy applications involving the hematopoietic system.  相似文献   

11.
Despite the high degree of sequence homology between adeno-associated virus (AAV) serotype 1 and 6 capsids (99.2%), these viruses have different liver transduction profiles when tested as vectors. Examination of the six amino acid residues that differ between AAV1 and AAV6 revealed that a lysine-to-glutamate change (K531E) suppresses the heparin binding ability of AAV6. In addition, the same mutation in AAV6 reduces transgene expression to levels similar to those achieved with AAV1 in HepG2 cells in vitro and in mouse liver following portal vein administration. In corollary, the converse E531K mutation in AAV1 imparts heparin binding ability and increases transduction efficiency. Extraction of vector genomes from liver tissue suggests that the lysine 531 residue assists in preferential transduction of parenchymal cells by AAV6 vectors in comparison with AAV1. Lysine 531 is unique to AAV6 among other known AAV serotypes and is located in a basic cluster near the spikes that surround the icosahedral threefold axes of the AAV capsid. Similar to studies with autonomous parvoviruses, this study describes the first example of single amino acid changes that can explain differential phenotypes such as viral titer, receptor binding, and tissue tropism exhibited by closely related AAV serotypes. In particular, a single lysine residue appears to provide the critical minimum charged surface required for interacting with heparin through electrostatic interaction and simultaneously plays an unrelated yet critical role in the liver tropism of AAV6 vectors.  相似文献   

12.
Structure of adeno-associated virus type 4   总被引:2,自引:0,他引:2  
Adeno-associated virus (AAV) is a member of the Parvoviridae, belonging to the Dependovirus genus. Currently, several distinct isolates of AAV are in development for use in human gene therapy applications due to their ability to transduce different target cells. The need to manipulate AAV capsids for specific tissue delivery has generated interest in understanding their capsid structures. The structure of AAV type 4 (AAV4), one of the most antigenically distinct serotypes, was determined to 13-A resolution by cryo-electron microscopy and image reconstruction. A pseudoatomic model was built for the AAV4 capsid by use of a structure-based sequence alignment of its major capsid protein, VP3, with that of AAV2, to which AAV4 is 58% identical and constrained by its reconstructed density envelope. The model showed variations in the surface loops that may account for the differences in receptor binding and antigenicity between AAV2 and AAV4. The AAV4 capsid surface topology also shows an unpredicted structural similarity to that of Aleutian mink disease virus and human parvovirus B19, autonomous members of the genus, despite limited sequence homology.  相似文献   

13.
The development of targeted vectors, capable of tissue-specific transduction, remains one of the important aspects of vector modification for gene therapy applications. Recombinant adeno-associated virus type 2 (rAAV-2)-based vectors are nonpathogenic, have relatively low immunogenicity, and are capable of long-term transgene expression. AAV-2 vectors bind primarily to heparan sulfate proteoglycan (HSPG), a receptor that is present in many tissues and cell types. Because of the widespread expression of HSPG on many tissues, targeted transduction in vivo appears to be limited with AAV-2 vectors. Thus, development of strategies to achieve transductional targeting will have a profound benefit in the future application of these vectors. We report here a novel conjugate-based targeting method to enhance tissue-specific transduction of AAV-2-based vectors. The present report utilized a high-affinity biotin-avidin interaction as a molecular bridge to cross-link purified targeting ligands, produced genetically as fusion proteins to core-streptavidin, in a prokaryotic expression system. Conjugation of the bispecific targeting protein to the vector was achieved by biotinylating purified rAAV-2 without abolishing the capsid structure, internalization, and subsequent transgene expression. The tropism-modified vectors, targeted via epidermal growth factor receptor (EGFR) or fibroblast growth factor 1alpha receptor (FGFR1alpha), resulted in a significant increase in transduction efficiency of EGFR-positive SKOV3.ip1 cells and FGFR1alpha-positive M07e cells, respectively. Further optimization of this method of targeting should enhance the potential of AAV-2 vectors in ex vivo and in vivo gene therapy and may form the basis for developing targeting methods for other AAV serotype capsids.  相似文献   

14.
Adeno-associated viruses (AAV) are utilized as gene transfer vectors in the treatment of monogenic disorders. A variant, rationally engineered based on natural AAV2 isolates, designated AAV-True Type (AAV-TT), is highly neurotropic compared to wild type AAV2 in vivo, and vectors based on it, are currently being evaluated for central nervous system applications. AAV-TT differs from AAV2 by 14 amino acids, including R585S and R588T, two residues previously shown to be essential for heparan sulfate binding of AAV2. The capsid structures of AAV-TT and AAV2 visualized by cryo-electron microscopy at 3.4 and 3.0 Å resolution, respectively, highlighted structural perturbations at specific amino acid differences. Differential scanning fluorimetry (DSF) performed at different pH conditions demonstrated that the melting temperature (Tm) of AAV2 was consistently ∼5 °C lower than AAV-TT, but both showed maximal stability at pH 5.5, corresponding to the pH in the late endosome, proposed as required for VP1u externalization to facilitate endosomal escape. Reintroduction of arginines at positions 585 and 588 in AAV-TT caused a reduction in Tm, demonstrating that the lack of basic amino acids at these positions are associated with capsid stability. These results provide structural and thermal annotation of AAV2/AAV-TT residue differences, that account for divergent cell binding, transduction, antigenic reactivity, and transduction of permissive tissues between the two viruses. Specifically, these data indicate that AAV-TT may not utilize a glycan receptor mediated pathway to enter cells and may have lower antigenic properties as compared to AAV2.  相似文献   

15.
Some of the most successful gene therapy results have been obtained using recombinant viral vectors to treat animal models of inherited and acquired ocular diseases. Clinical trials using adenovirus vector systems have been initiated for two ocular diseases. Adeno-associated viruses (AAVs) represent an attractive alternative to adenoviral vector systems as they enable stable and long-term expression and can target a variety of different ocular cell types depending on the capsid serotype; recently clinical trails for congenital blindness was initiated with a vector-based AAV serotype 2. High levels of retinal gene transfer have been achieved using vectors based on AAV serotypes 1, 2, 4 and 5. This report compares the gene transfer efficacy and stability of expression of vector systems based on three novel AAV serotypes: AAV7, 8, 9, with the established vectors AAV1, 2, 5. We show here that AAV7 and 8 enable superior long-term transduction of retinal and also anterior chamber structures.  相似文献   

16.
Recombinant adeno-associated viral (AAV) vectors are known to safely and efficiently transduce the retina. Among the various AAV serotypes available, AAV2/5 and 2/8 are the most effective for gene transfer to photoreceptors (PR), which are the most relevant targets for gene therapy of inherited retinal degenerations. However, the search for novel AAV serotypes with improved PR transduction is ongoing. In this work we tested vectors derived from five AAV serotypes isolated from porcine tissues (referred to as porcine AAVs, four of which are newly identified) for their ability to transduce both the murine and the cone-enriched pig retina. Porcine AAV vectors expressing EGFP under the control of the CMV promoter were injected subretinally either in C57BL/6 mice or Large White pigs. The resulting retinal tropism was analyzed one month later on histological sections, while levels of PR transduction were assessed by Western blot. Our results show that all porcine AAV transduce murine and porcine retinal pigment epithelium and PR upon subretinal administration. AAV2/po1 and 2/po5 are the most efficient porcine AAVs for murine PR transduction and exhibit the strongest tropism for pig cone PR. The levels of PR transduction obtained with AAV2/po1 and 2/po5 are similar, albeit not superior, to those obtained with AAV2/5 and AAV2/8, which evinces AAV2/po1 and 2/po5 to be promising vectors for retinal gene therapy.  相似文献   

17.
BACKGROUND: Gene therapy is an attractive new approach for the treatment of cancer. Therefore, the development of efficient vector systems is of crucial importance in this field. Different adeno-associated virus (AAV) serotypes have been characterized so far, which show considerable differences in tissue tropism. Consequently, we aimed to characterize the most efficient serotype for this application. METHODS: To exclude all influences other than those provided by the capsid, all serotypes contained the same transgene cassette flanked by the AAV2 inverted terminal repeats. We systematically compared these vectors for efficiency in human cancer cell directed gene transfer. In order to identify limiting steps, the influence of second-strand synthesis and proteasomal degradation of AAV in a poorly transducible cell line were examined. RESULTS: AAV2 was the most efficient serotype in all solid tumor cells and primary melanoma cells with transduction rates up to 98 +/- 0.3%. Transduction above 70% could be reached with serotypes 1 (in cervical and prostate carcinoma) and 3 (in cervical, breast, prostate and colon carcinoma) using 1000 genomic particles per cell. In the colon carcinoma cell line HT-29 proteasomal degradation limited AAV1-AAV4-mediated gene transfer. Moreover, inefficient second-strand synthesis prevents AAV2-mediated transgene expression in this cell line. CONCLUSIONS: Recent advances in AAV-vector technology suggest that AAV-based vectors can be used for cancer gene therapy. Our comparative analysis revealed that, although AAV2 is the most promising candidate for such an application, serotypes 1 and 3 are valid alternatives. Furthermore, the use of self-complementary AAV vectors and proteasome inhibitors significantly improves cancer cell transduction.  相似文献   

18.
In recent years recombinant adeno-associated viral vectors (AAV) have become increasingly valuable for in vivo studies in animals, and are also currently being tested in human clinical trials. Wild-type AAV is a non-pathogenic member of the parvoviridae family and inherently replication-deficient. The broad transduction profile, low immune response as well as the strong and persistent transgene expression achieved with these vectors has made them a popular and versatile tool for in vitro and in vivo gene delivery. rAAVs can be easily and cheaply produced in the laboratory and, based on their favourable safety profile, are generally given a low safety classification. Here, we describe a method for the production and titering of chimeric rAAVs containing the capsid proteins of both AAV1 and AAV2. The use of these so-called chimeric vectors combines the benefits of both parental serotypes such as high titres stocks (AAV1) and purification by affinity chromatography (AAV2). These AAV serotypes are the best studied of all AAV serotypes, and individually have a broad infectivity pattern. The chimeric vectors described here should have the infectious properties of AAV1 and AAV2 and can thus be expected to infect a large range of tissues, including neurons, skeletal muscle, pancreas, kidney among others. The method described here uses heparin column purification, a method believed to give a higher viral titer and cleaner viral preparation than other purification methods, such as centrifugation through a caesium chloride gradient. Additionally, we describe how these vectors can be quickly and easily titered to give accurate reading of the number of infectious particles produced.  相似文献   

19.
J A Chiorini  L Yang  Y Liu  B Safer    R M Kotin 《Journal of virology》1997,71(9):6823-6833
We have cloned and characterized the full-length genome of adeno-associated virus type 4 (AAV4). The genome of AAV4 is 4,767 nucleotides in length and contains an expanded p5 promoter region compared to AAV2 and AAV3. Within the inverted terminal repeat (ITR), several base changes were identified with respect to AAV2. However, these changes did not affect the ability of this region to fold into a hairpin structure. Within the ITR, the terminal resolution site and Rep binding sites were conserved; however, the Rep binding site was expanded from three GAGC repeats to four. The Rep gene product of AAV4 shows greater than 90% homology to the Rep products of serotypes 2 and 3, with none of the changes occurring in regions which had previously been shown to affect the known functions of Rep68 or Rep78. Most of the differences in the capsid proteins lie in regions which are thought to be on the exterior surface of the viral capsid. It is these unique regions which are most likely to be responsible for the lack of cross-reacting antibodies and the altered tissue tropism compared to AAV2. The results of our studies, performed with a recombinant version of AAV4 carrying a lacZ reporter gene, suggest that AAV4 can transduce human, monkey, and rat cells. Furthermore, comparison of transduction efficiencies in a number of cell lines, competition cotransduction experiments, and the effect of trypsin on transduction efficiency all suggest that the cellular receptor for AAV4 is distinct from that of AAV2.  相似文献   

20.
Icosahedral viral capsids are obligated to perform a thermodynamic balancing act. Capsids must be stable enough to protect the genome until a suitable host cell is encountered yet be poised to bind receptor, initiate cell entry, navigate the cellular milieu, and release their genome in the appropriate replication compartment. In this study, serotypes of adeno-associated virus (AAV), AAV1, AAV2, AAV5, and AAV8, were compared with respect to the physical properties of their capsids that influence thermodynamic stability. Thermal stability measurements using differential scanning fluorimetry, differential scanning calorimetry, and electron microscopy showed that capsid melting temperatures differed by more than 20°C between the least and most stable serotypes, AAV2 and AAV5, respectively. Limited proteolysis and peptide mass mapping of intact particles were used to investigate capsid protein dynamics. Active hot spots mapped to the region surrounding the 3-fold axis of symmetry for all serotypes. Cleavages also mapped to the unique region of VP1 which contains a phospholipase domain, indicating transient exposure on the surface of the capsid. Data on the biophysical properties of the different AAV serotypes are important for understanding cellular trafficking and is critical to their production, storage, and use for gene therapy. The distinct differences reported here provide direction for future studies on entry and vector production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号