Author Keywords: Thermal conductivity; bioheat transfer; kidney, in vitro; tissue H2O content; rabbit 相似文献
共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Kidney medulla cells of mammals have to cope with large changes in environmental osmolarity, a challenge most other mammalian cells never have to experience. In these last cells, application of osmotic shocks induces dramatic modifications in chromatin organization. The present paper reports on the changes of medulla cell chromatin in situ, in rat kidney slices submitted to osmotic challenges and in vitro, on preparations of extracted chromatin submitted to changes in environmental ion concentrations. Our results show that the chromatin of kidney medulla cells: (1) does not behave differently from the other mammalian chromatins when submitted in situ or in vitro to osmotic challenges; (2) presents in vitro physico-chemical characteristics similar to those of the other mammalian chromatins; and (3) is protected in vitro, as the other mammalian chromatins, from the disrupting effects of increases in inorganic ion concentrations by different compensatory organic solutes. The ability of kidney medulla cells to adapt to large increases in osmolarity could thus be related to a rapid control of the level of such compounds rather than to some rather specific, intrinsic molecular adaptations of macromolecules. 相似文献
3.
4.
5.
F Ikemoto G B Song M Tominaga Y Kanayama K Yamamoto 《Biochemical and biophysical research communications》1987,144(2):915-921
Regional distribution of angiotensin converting enzyme(ACE) in the rat kidney was studied. The ACE activities in the inner cortex and outer medulla were about 10 and 5 times those in the outer cortex, respectively. The activity in the inner medulla or papilla was much the same as that in the outer cortex. Immunofluorescence was greatest in the proximal tubules in the inner cortex, while the outer medulla and the inner medulla or papilla showed a weak fluorescence. The brush border membranes isolated from the inner cortex also possessed about 10 times the ACE activity seen in the outer cortex. The results indicate that the major source of renal ACE is not the proximal convoluted tubules in the outer cortex, but rather the brush border membranes of proximal tubules in the inner cortex. The contribution of ACE in the inner cortex would therefore be predominant. 相似文献
6.
The rate of 14C-leucine incorporation into protein has been examined in rat kidney tissue. The presence of a marked gradient was observed. Thus, the white medulla was the most active in this respect followed by, in descending order, red medulla and cortex. 14C-Leucine incorporation into protein was completely abolished in the presence of cycloheximide. The distribution of labeled protein between the medium and slice suggests a high degree of cellular integrity and little secretion of labeled protein from slice to medium. The pattern of 14C-leucine incorporation amongst the different zones of kidney of hypophysectomized rats was similar to that noted in normal rats. 相似文献
7.
《BBA》2022,1863(2):148518
The kinetics and efficiency of mitochondrial oxidative phosphorylation (OxPhos) can depend on the choice of respiratory substrates. Furthermore, potential differences in this substrate dependency among different tissues are not well-understood. Here, we determined the effects of different substrates on the kinetics and efficiency of OxPhos in isolated mitochondria from the heart and kidney cortex and outer medulla (OM) of Sprague-Dawley rats. The substrates were pyruvate+malate, glutamate+malate, palmitoyl-carnitine+malate, alpha-ketoglutarate+malate, and succinate±rotenone at saturating concentrations. The kinetics of OxPhos were interrogated by measuring mitochondrial bioenergetics under different ADP perturbations. Results show that the kinetics and efficiency of OxPhos are highly dependent on the substrates used, and this dependency is distinctly different between heart and kidney. Heart mitochondria showed higher respiratory rates and OxPhos efficiencies for all substrates in comparison to kidney mitochondria. Cortex mitochondria respiratory rates were higher than OM mitochondria, but OM mitochondria OxPhos efficiencies were higher than cortex mitochondria. State 3 respiration was low in heart mitochondria with succinate but increased significantly in the presence of rotenone, unlike kidney mitochondria. Similar differences were observed in mitochondrial membrane potential. Differences in H2O2 emission in the presence of succinate±rotenone were observed in heart mitochondria and to a lesser extent in OM mitochondria, but not in cortex mitochondria. Bioenergetics and H2O2 emission data with succinate±rotenone indicate that oxaloacetate accumulation and reverse electron transfer may play a more prominent regulatory role in heart mitochondria than kidney mitochondria. These studies provide novel quantitative data demonstrating that the choice of respiratory substrates affects mitochondrial responses in a tissue-specific manner. 相似文献
8.
9.
The mature renal medulla, the inner part of the kidney, consists of the medullary collecting ducts, loops of Henle, vasa recta and the interstitium. The unique spatial arrangement of these components is essential for the regulation of urine concentration and other specialized kidney functions. Thus, the proper and timely assembly of medulla constituents is a crucial morphogenetic event leading to the formation of a functioning metanephric kidney. Mechanisms that direct renal medulla formation are poorly understood. This review describes the current understanding of the key molecular and cellular mechanisms underlying morphological aspects of medulla formation. Given that hypoplasia of the renal medulla is a common manifestation of congenital obstructive nephropathy and other types of congenital anomalies of the kidney and urinary tract (CAKUT), better understanding of how disruptions in medulla formation are linked to CAKUT will enable improved diagnosis, treatment and prevention of CAKUT and their associated morbidity. 相似文献
10.
《Organogenesis》2013,9(1):10-17
The mature renal medulla, the inner part of the kidney, consists of the medullary collecting ducts, loops of Henle, vasa recta and the interstitium. The unique spatial arrangement of these components is essential for the regulation of urine concentration and other specialized kidney functions. Thus, the proper and timely assembly of medulla constituents is a crucial morphogenetic event leading to the formation of a functioning metanephric kidney. Mechanisms that direct renal medulla formation are poorly understood. This review describes the current understanding of the key molecular and cellular mechanisms underlying morphological aspects of medulla formation. Given that hypoplasia of the renal medulla is a common manifestation of congenital obstructive nephropathy and other types of congenital anomalies of the kidney and urinary tract (CAKUT), better understanding of how disruptions in medulla formation are linked to CAKUT will enable improved diagnosis, treatment and prevention of CAKUT and their associated morbidity. 相似文献
11.
12.
13.
1. 1.|H2O content and local-tissue thermal conductivity were measured in cortex and medulla of 7 freshly-excised rabbit kidneys.
2. 2.|Tissue H2O content and thermal conductivity k (83.4% and 0.516 W m−t K−1, respectively) in the medulla were significantly higher than those (77.7% and 0.475 W m−1 K−1, respectively) measured in the cortex.
3. 3.|Correlations between the measured parameters are made, and the variability of previously-reported measurements of kidney-tissue thermal conductivity is discussed.
14.
15.
Adenylate cyclase (AC) and phosphodiesterase (PDE) activities were studied in the cortex, medulla and papilla of the rat kidney. Sodium loading in vivo for 14 days resulted in a decrease of AC activity in the cortex, a small increase in the medulla and a substantial increase of AC activity in the papilla. Sodium loading caused reciprocal effects on PDE activity: an increase in kidney cortex and a decrease in kidney papilla. Loading of glucose in vivo or chronic administration of antidiuretic hormone in vivo did not cause the changes in AC or PDE observed after sodium loading. The possible significance of these findings is discussed. 相似文献
16.
In vitro utilization or production of citrate by the cortex, outer medulla or inner medulla of dog kidney was measured. Our data show: 1. An in vitro citrate synthesis or utilization capacity of the cortex greater than that of the red medulla. 2. An effect of pH on citrate synthesis or utilization capacity of the cortex, an effect not seen with medullary slices. 3. An absence of citrate synthesis or utilization by white medulla slices. It would seem that the citrate found in the white medulla and the papilla of the dog kidney in vivo was not produced in situ. 相似文献
17.
18.
19.
20.
1. In rat kidney cortex, outer and inner medulla the development of activities of seven enzymes was investigated during postnatal ontogeny (10, 20, 30, 60 and 90 days of age). The enzymes were selected in such a manner, as to characterize most of the main metabolic pathways of energy supplying metabolism: hexokinase (glucose phosphorylation, HK), glycerol-3-phosphate dehydrogenase (glycerolphosphate metabolism or shunt, GPDH), triose phosphate dehydrogenase (glycolytic carbohydrate breakdown, TPDH), lactate dehydrogenase (lactate metabolism, LDH), citrate synthase (tricarboxylic acid cycle, aerobic metabolism, CS), malate NAD dehydrogenase (tricarboxylic acid cycle, intra-extra mitochondrial hydrogen transport, MDH) and 3-hydroxyacyl-CoA-dehydrogenase (fatty acid catabolism, HOADH). 2. The renal cortex already differs metabolically from the medullar structures on the 10th day of life. It displays a high activity of aerobic breakdown of both fatty acids and carbohydrates. Its metabolic capacity further increases up to the 30th day of life. 3. The outer medullar structure is not grossly different from the inner medulla on the 10th day of life. Further it differentiates into a highly aerobic tissue mainly able to utilize carbohydrates. It can, however, to some extent, also utilize fatty acids aerobically and produce lactate from carbohydrates anaerobically. 4. The inner medullar structure is best equipped to utilize carbohydrates by anaerobic glycolysis, forming lactate. This feature is already pronounced on the 10th day of life, its capacity increases to some extent during postnatal development, being highest between the 10th and the 60th day of life. 相似文献