首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucagon administered subcutaneously to rats for 10 days had no significant effect on liver phenylalanine hydroxylase activity, but induced liver dihydropteridine reductase more than twofold. In rats administered a phenylalanine load orally, glucagon treatment stimulated oxidation and depressed urinary phenylalanine excretion. These responses could not be related to an effect of glucagon on hepatic tyrosine-alpha-oxoglutarate aminotransferase activity. Even in rats with phenylalanine hydroxylase activity depressed to 50% of control values by p-chlorophenylalanine administration, glucagon treatment increased the phenylalanine-oxidation rate substantially. Although hepatic phenylalanine-pyruvate aminotransferase was increased tenfold in glucagon-treated rats, glucagon treatment did not increase urinary excretion of phenylalanine transamination products by rats given a phenylalanine load. Glucagon treatment did not affect phenylalanine uptake by the gut or liver, or the liver content of phenylalanine hydroxylase cofactor. It is suggested that dihydropteridine reductase is the rate-limiting enzyme in phenylalanine degradation in the rat, and that glucagon may regulate the rate of oxidative phenylalanine metabolism in vivo by promoting indirectly the maintenance of the phenylalanine hydroxylase cofactor in its active, reduced state.  相似文献   

2.
Injections of phenylalanine increased a 2.5-fold in 9 h the hepatic phenylalanine hydroxylase activity of 6-day-old or adult rats that had been pretreated (24h earlier) with p-chlorophenylalanine; without such pretreatment, phenylalanine did not raise the enzyme concentration. This difference is paralleled by the much greater extent to which the injected phenylalanine accumulated in livers of the pretreated compared with the normal animals. The hormonal induction of hepatic phenylalanine hydroxylase activity obeyed different rules: an injection of cortisol was without effect on adult livers but caused a threefold rise in phenylalanine hydroxylase activity of immature ones, both without and after pretreatment with p-chlorophenylalanine. In the latter instance, the effects of cortisol, and of phenylalanine were additive. Actinomycin inhibited the cortisol- but not the substrate-induced increase of phenylalanine hydroxylase, whereas puromycin inhibited both. The results indicate that substrate and hormone, two potential positive regulators of the amount of the hepatic (but not the renal) phenylalanine hydroxylase, act independently by two different mechanisms. The negative effector, p-chlorophenylalanine, also appears to interact with the synthetic (or degradative) machinery rather than with the existing phenylalanine hydroxylase molecules: 24h were required in vivo for an 85% decrease to ensue, and no inhibition occurred in vitro when incubating the enzyme with p-chlorophenylalanine or with liver extracts from p-chlorophenylalanine-treated rats.  相似文献   

3.
The administration of a single dose of p-chlorophenylalanine (360 mg/kg) to rats leads to the irreversible loss of 90% of hepatic phenylalanine hydroxylase activity after 24 h. This loss of activity is not the result of either an alteration in the overall structure of the enzyme, as determined by its antigenicity, or in the total immunologically reactive protein in the liver, as tested with a specific antiserum prepared against native phenylalanine hydroxylase. Neither the rate of synthesis nor the rate of degradation of phenylalanine hydroxylase is changed by p-chlorophenylalanine (pClPhe) treatment. The half-life for the enzyme is about 2 days in control and in pClPhe-treated rats. In addition, there is no detectable incorporation of pClPhe into the phenylalanine hydroxylase molecule itself.  相似文献   

4.
L T Murthy 《Life sciences》1975,17(12):1777-1783
Inhibitors of phenylalanine hydroxylase and tyrosine hydroxylase were used in the assay of phenylalanine hydroxylase in liver and kidney of rats and mice. Parachlorophenylalanine (PCPA), methyl tyrosine methyl ester and dimethyl tyrosine methyl ester showed 5–15% inhibition while α-methyl tyrosine seemed to inhibit phenylalanine hydroxylase to the extent of 95–98% at concentrations of 5 × 10 −5M –1 × 10 −4M. After a phenylketonuric diet (0.12% PCPA + 3% excess phenylalanine), the liver showed 60% phenylalanine hydroxylase activity and kidney 82% that present in pair-fed normals. Hepatic activity was normal after 8 days refeeding normal diet whereas kidney showed 63% of normal activity. The PCPA-fed animals showed 34% in liver and 38% in kidney as compared to normals; in both cases normal activity was noticed after refeeding. The phenylalanine-fed animals showed activity similar to that seen in phenylketonuric animals. The temporary inducement of phenylketonuria in these animals may be due to a slight change in conformation of the phenylalanine hydroxylase molecule; once the normal diet is resumed, the enzyme reverts back to its active form. This paper also suggests that α-methyl tyrosine when fed in conjunction with the phenylketonuric diet may suppress phenylalanine hydroxylase activity completely in the experimental animals thus yielding normal tyrosine levels as seen in human phenylketonurics.  相似文献   

5.
The rate of release of deuterons into the body water from 2,3,4,5,6-pentadeutero-L-phenylalanine has been shown to be a valid measure of the activity of the phenylalanine hydroxylase system in vivo. At a dose of 0.5 g/kg, the rate of release of deuterons is linear for 60 to 90 min. Male rats, which had previously been shown to have 22 to 25% more phenylalanine hydroxylase activity in liver extracts than female rats, produced deuterons from deuterated phenylalanine at a rate 20 to 30% greater than female rats. p-Chlorophenylalanine, which irreversibly inhibits phenylalanine hydroxylase in vivo, caused a similar degree of inhibition of the rate of deuteron formation as was found when phenylalanine hydroxylase was measured in extracts from the same group of animals. Methotrexate, which inhibits the phenylalanine hydroxylase system by preventing regeneration of the tetrahydropteridine cofactor, caused parallel inhibition of the in vivo assay as well as when the conversion of phenylalanine to tyrosine was measured in liver slices. Randomly ring-tritiated phenylalanine can be used interchangeably with ring-deuterated phenylalanine if greater sensitivity is needed in the in vivo assay for phenylalanine hydroxylase. However, a dose of 20 to 30 muCi/kg is required. The in vivo deuterium release assay described in this paper should be useful in studying the physiological control of the phenylalanine hydroxylating system. It also may be of value in differentiating between individuals who are heterozygotes for phenylketonuria and those who are homozygotes for hyperphenylalaninemia.  相似文献   

6.
Chronic (10-day) diabetes was associated with increased metabolic flux through phenylalanine hydroxylase in isolated liver cells. This flux was stimulated by 0.1 microM-glucagon, but not by 10 microM-noradrenaline; 0.1 microM-insulin affected neither basal nor glucagon-stimulated flux. The increased rate of phenylalanine hydroxylation in diabetes was accompanied by parallel increases in enzyme activity (as measured with artificial cofactor) and immunoreactive-enzyme-protein content. In contrast with total protein synthesis, which decreased, phenylalanine hydroxylase synthesis persisted at the control rate in cells from diabetic animals. These findings are discussed in relation to the hormonal regulation of the hydroxylase and the known metabolic consequences of chronic diabetes.  相似文献   

7.
alpha-Methylphenylalanine is a very weak competitive inhibitor of rat liver phenylalanine hydroxylase in vitro but a potent suppressor in vivo. The loss of the hepatic activity (the renal one is unaffected) becomes maximal (70-75% decrease; cf. control) 18h after the administration (per 10g body wt.) of 24 mumol of alpha-methylphenylalanine with or without 52 mumol of phenylalanine. Chronic suppression of hepatic phenylalanine hydroxylase was obtained by injections of alpha-methylphenylalanine plus phenylalanine to suckling rats, and by their addition to the diet after weaning. A series of comparisons of the effects of this treatment, and one with p-chlorophenylalanine, was then carried out. In both cases there was a rise (1.3-2-fold) in phenylalanine-pyruvate amino-transferase activity (but no change in four other enzyme activities) in the liver; in brain there was a rise in phosphoserine phosphatase activity, but the total activity and subcellular distribution of nine enzymes revealed no other abnormalities in cerebral development. Striking increases in the concentration of plasma phenylalanine during 26 of the 31 experimental days (with a transient fall at 18-22 days) were maintained by treatment with both analogues plus phenylalanine. However, p-chlorophenylalanine-treated animals had a 30-60% mortality rate and 27-52% decrease in body weight. Developing rats treated with alpha-methylphenylalanine, showing no growth deficit or signs of toxicity (e.g. cataracts), appear to be a more suitable model for the human disease of phenylketonuria. Their phenylalanine concentrations exhibited at least 20-40-fold increase during 50% of each of the first 18 days of life, and 30-fold after weaning.  相似文献   

8.
Moderate doses of glucagon (20 g/kg I.V.) are sufficient to stimulate rat hepatic phenylalanine hydroxylase in vivo. In addition, the stimulation of the tetrahydrobiopterin-dependent phenylalanine hydroxylase activity in livers of animals fed on a high-protein diet has been correlated with an elevated phosphate content. The tetrahydrobiopterin-dependent hydroxylase activity in these animals can be further elevated by glucagon-stimulated phosphorylation. These results indicate that physiological changes in glucagon concentration modulate rat liver phenylalanine hydroxylase activity in vivo. The current understanding of the role of phosphorylation in regulating human phenylalanine hydroxylase is also considered.  相似文献   

9.
The effect of glucagon-induced phenylalanine:pyruvate transaminase on the urinary excretion of the unconjugated metabolites of phenylalanine transamination was studied in rats. Chronic injection of glucagon induced an 18-fold increase in hepatic phenylalanine:pyruvate transaminase activity. Treatment with p-chlorophenylalanine (PCPA) blocked phenylalanine hydroxylase and caused an elevation of plasma phenylalanine following administration of an intraperitoneal loading dose of this amino acid. Gasliquid Chromatographic analysis demonstrated the presence of phenylpyruvate, phenyllactate, and O-hydroxyphenylacetate in the urine of PCPA- and PCPA-glucagontreated rats, but not control or glucagon-treated animals. Combined PCPA-glucagon treatment caused twofold increase in phenylpyruvate and phenyllactate concentrations and a fivefold increase in O-hydroxyphenylacetate concentration, when compared to urinary metabolite levels from rats receiving only PCPA treatment. A decrease in plasma phenylalanine was found together with the elevated urinary levels of the phenylalanine transamination metabolites. The results provide the first evidence that the unconjugated transamination metabolite concentrations increase when concurrent treatment with glucagon causes high-level induction of hepatic phenylalanine:pyruvate transaminase.  相似文献   

10.
The range of phenylalanine hydroxylase activity was determined by measuring the conversion of radioactive phenylalanine to tyrosine in liver and kidney of various vertebrates. Rodents (rats, mouse, gerbil, hamster and guinea pig) were found to have the highest liver phenylalanine hydroxylase activity among all animals studied. They are also the only species that possessed a significant kidney phenylalanine hydroxylase activity which was about 25% of that found in the liver of the same animal. The synthetic dimethyl-tetrahydro-pteridine, used as a cofactor for the enzyme assay in most studies, catalyzed non-enzymatic hydroxylation of phenylalanine to tyrosine. Inclusion of boiled-blank and strict control of timing between incubation and product measurement were essential precautions to minimize erroneous results from substrate contamination and non-enzymatic hydroxylation.  相似文献   

11.
The plasma concentration of phenylalanine and tyrosine decreases in normal rats during the first few postnatal days; subsequently, the concentration of phenylalanine remains more or less constant, whereas that of tyrosine exhibits a high peak on day 13. The basal concentrations of the two amino acids were not altered by injections of thyroxine or cortisol, except in 13-day-old rats, when an injection of cortisol decreased the concentration of tyrosine. In young rats (13-15 days old), treatment with cortisol increased the activity of phenylalanine hydroxylase in the liver (measured in vitro) and accelerated the metabolism of administered phenylalanine: the rate constant of the disappearance of phenylalanine from plasma and the initial increase in tyrosine in plasma correlated quantitatively with the activity of phenylalanine hydroxylase in the liver. In adult rats, the inhibition of this enzyme (attested by assay in vitro) by p-chlorophenylalanine resulted in a proportionate decrease in tyrosine formation from an injection of phenylalanine. However, the quantitative relationship between liver phenylalanine hydroxylase activity and phenylalanine metabolism within the group of young rats was different from that observed among adult rats.  相似文献   

12.
13.
Tularaemia in rats causes a doubling of the serum phenylalanine/tyrosine ratio and a more than twofold increase in muscle phenylalanine which cannot be accounted for by decreased hepatic phenylalanine hydroxylase (EC 1.14.16.1) activity, but appear to result from a generalized movement of amino acids from muscle to liver during infection.  相似文献   

14.
Summary Although the regulatory activity of steroid hormones on amino acid metabolism has been described, no information is published on the effect of ovariectomy. We studied the influence of ovariectomy in Wistar rats determining the amino acids phenylalanine and tyrosine in liver, kidney, plasma and urine. 32 animals were used in the study, 12 animals were sham operated, 9 animals were ovariectomized and 11 rats were ovariectomized and supplemented with estradiol. No quantitative changes were detected comparing liver and kidney phenylalanine and tyrosine between the groups (sham operated rats liver phenylalanine 2,53nM/mg ± 1,07; liver tyrosine 1.95nM/mg ± 0.92; kidney phenylalanine 2.16nM/mg ± 0.53; kidney tyrosine 1.80nM/mg ± 0.39. Ovariectomized rats showed liver phenylalanine 3.07nM/mg ± 1.14; liver tyrosine 2.63nM/mg ± 1.01; kidney phenylalanine 2.30 nM/mg ± 0.74; kidney tyrosine 1.93nM/mg ± 0.63. Ovariectomized and estradiol supplemented rats presented with liver phenylalanine 2.84nM/mg ± 1.40; liver tyrosine 2.35nM/mg ± 1.28; kidney phenylalanine 1.91nM/mg ± 0.26, kidney tyrosine 1.67nM/mg ± 0.23.). When, however, the phenylalanine/tyrosine ratio in the liver was evaluated, ovariectomized rats showed a significant decrease of the quotient (p = 0.001). The phenylalanine/tyrosine ratio was restored by estradiol replacement. Our findings show that phenylalanine and tyrosine metabolism is under estradiol control. The effect on the metabolic changes could be mediated by enzyme systems as phenylalanine hydroxylase, tyrosine hydroxylase and tyrosine aminotransferase. Our results would be compatible with previous reports on the stimulatory effect of estradiol on these enzymes. The kidney phenylalanine/tyrosine ratio was unaffected by ovariectomy and/or estradiol replacement which can be easily explained by different pools, enzyme activities, filtration/reabsorption effects, etc.The urinary P/T ratio was decreased by ovariectomy and restored by estradiol replacement indicating endocrine control of renal reabsorption and secretion mechanisms.  相似文献   

15.
Incubation of H4-II-E-C3 rat hepatoma cells with either hydrocortisone or dexamethasone resulted in 3- to 5-fold increases in the levels of both phenylalanine hydroxylase and its essential cofactor, tetrahydrobiopterin. Maximum elevation of phenylalanine hydroxylase was noted after 24 h of incubation, whereas significant increases in tetrahydrobiopterin were found only after 48 h exposure of the cells to glucocorticoids. Removal of hormone from the culture medium resulted in rapid loss of cell tetrahydrobiopterin, but a much slower decline in the level of phenylalanine hydroxylase. Thus, although the levels of both phenylalanine hydroxylase and tetrahydrobiopterin in rat hepatoma cells are regulated by glucocorticoids, this regulation is apparently not strictly coordinated. Nevertheless, control of cellular tetrahydrobiopterin levels may be an important regulator of hepatic phenylalanine catabolism since significant increases in the ability of intact rat liver cells to hydroxylate phenylalanine were observed only after 48 h exposure to glucocorticoids, in correlation with increases in cell tetrahydrobiopterin content.  相似文献   

16.
Normal human fetal liver contains little phenylalanine-pyruvate aminotransferase: between the 11th and 22nd week of gestation its activity (per g) is 8.8% of that in adult liver. In rat liver this enzyme begins to rise a few hours before birth. Precocious increases in the phenylalanine-pyruvate aminotransferase activity of fetal rat liver (but not kidney or brain) were evoked by premature delivery and also by the administration of thyroxine or glucagon in utero. These results, Discussed in relation to related observations on other enzymes, suggest that thyroxine secreted by the fetus, and also another factor relaesed at the beginning of labour, may be the natural stimuli for the developmental formation of phenylalanine-pyruvate aminotransferase.The regulation of hepatic phenylalanine-pyruvate aminotransferase and phenylalanine hydroxylase (L-phenylalanine, tetrahydropteridine:oxygen oxidoreductase (4-hydroxylating), EC 1.14.16.1) during fetal development is different: in both man and rat, phenylalanine hydroxylase begins to rise earlier and is unaffected by the treatments which enhanced the formation of phenylalanine-pyruvate aminotransferase. In suckling rats (but not in fetuses and adults), an injection of cortisol increased the levels of both enzymes. Hepatocarcinomas of the adult rat were devoid phenylalanine hydroxylase as well as phenylalanine-pyruvate aminotransferase. However, suppression in vivo by substrate analogues (α-methylphenylalanine and p-chlorophenylalanine) was unique for phenylalanine hydroxylase.  相似文献   

17.
The inhibitory properties of beta-2-thienyl-dl-alanine on rat phenylalanine hydroxylase from crude liver and kidney homogenates were assessed in vitro and in vivo, as well as its effects on the intestinal transport of phenylalanine, by using a perfusion procedure in vivo. The apparent K(m) for liver phenylalanine hydroxylase changed from 0.61mm in the absence of the inhibitor to 2.70mm in the presence of 24mm-beta-2-thienyl-dl-alanine, with no significant change in the V(max.). For kidney the corresponding values were 0.50 and 1.60mm respectively. A single dose of beta-2-thienyl-dl-alanine (2mmol/kg) failed to inhibit phenylalanine hydroxylase in either organ. Repeated injections during a 4-day period caused a decline of the enzymic activity to about 40% of controls. Intestinal absorption of phenylalanine when perfused at 0.2-2.0mm concentration was also competitively inhibited by beta-2-thienyl-dl-alanine. Its K(i) value was estimated at 81mm. The limited inhibitory effects of beta-2-thienyl-dl-alanine towards hepatic phenylalanine hydroxylase and phenylalanine intestinal transport, and its rapid metabolism, as suggested by the small elimination of this compound in the urine and its virtual absence from animal tissues, are factors that restrict its potential usefulness as an inducer of phenylketonuria in rats or as an effective blocker of phenylalanine absorption by the gut.  相似文献   

18.
When rats were fed a low protein diet containing 3% or more of phenylalanine, their growth rate and food intake were depressed, and eye and paw lesions which were similar to those in tyrosine toxicity developed in all rats. Their liver phenylalanine hydroxylase activity was depressed in proportion to the dietary phenylalanine content, and dihydropteridine reductase activity was in a great excess over hydroxylation activity, so phenylalanine hydroxylase activity seemed to be limited firstly in the degradation of phenylalanine. Excessive phenylalanine was accumulated, and the tyrosine concentration was higher than that of phenylalanine in the plasma and tissues of rats fed a diet containing 2% or more of phenylalanine. When p-Cl-phenylalanine (p-Cl-Phe) was injected to the rats fed excess phenylalanine, the phenylalanine hydroxylase was depressed, the concentration of tyrosine in the body was lowered, and the development of eye and paw lesions was prevented completely. The development of eye and paw lesions seemed to be associated with the extremely elevated tyrosine concentration in the body.  相似文献   

19.
The mechanism by which p-chlorophenylalanine specifically reduces phenylalanine hydroxylase activity in rat liver in vivo and in Reuber H4 hepatoma cells in culture has been investigated. Chromatography on hydroxylapatite of liver extract from rats injected with p-chlorophenylalanine showed that the compound differentially affected the three normal phenylalanine hydroxylase isoenzymes (I, II, and III); isoenzymes II and III were completely absent after the treatment, but isoenzyme I was only reduced in quantity compared with normal adult rats. Normal Reuber H4 cells only possess isoenzyme I; treatment with p-chlorophenylalanine yielded a reduced level of enzyme activity which appeared to be noraml isoenzyme I by both chromatographic and kinetic criteria. There is evidence, based on immunochemical techniques, that cultures grown in the presence of p-chlorophenylalanine have significantly reduced levels of phenylalanine hydroxylase antigen, and that p-chlorophenylalanine inactivates phenylalanine hydroxylase at or near the time of enzyme synthesis. The bulk of enzyme synthesized prior to the addition of the compound appears unaffected by it. There is no indication that protein synthesis itself is affected by p-chlorophenylalanine. In addition, p-chlorophenylacetate was found to inactivate phenylalanine hydroxylase in an apparently identical manner with p-chlorophenylalanine, which almost certainly eliminates from consideration any mechanism of inactivation specifically requiring an amino acid. Finally, effects of cycloheximide and chlorophenylalanine were compared. Taken together, the data lead to two possible models for the inactivation of the enzyme. The model most consistent with all data requires (predicts) the existence of a proenzyme form of phenylalanine hydroxylase which can be specifically inactivated by p-chlorophenylalanine.  相似文献   

20.
The hydrocortisone stimulation of phenylalanine hydroxylase activity in Reuber H4 hepatoma cells is shown to be associated with an alteration in phenylalanine hydroxylase isozyme composition. Three forms of phenylalanine hydroxylase were identified in H4 cells which have been treated with hydrocortisone; however, only one of these forms appears to be present prior to glucocorticoid treatment. The relative amounts, as well as the total amount, of the three forms and their chromatographic behavior on hydroxylapatite are nearly identical to the three phenylalanine hydroxylase isozymes found in adult rat liver. The hydroxylase isozyme composition in 2 day old rats is similar to that found in adult rats and in H4 cells treated with hydrocortisone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号