首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-MS/ESI) method for simultaneous determination of venlafaxine (VEN) and its three metabolites O-desmethylvenlafaxine (ODV), N-desmethylvenlafaxine (NDV) and N,O-didesmethylvenlafaxine (DDV) in human plasma has been developed and validated. Estazolam was used as the internal standard. The compounds and internal standard were extracted from plasma by a liquid-liquid extraction. The HPLC separation of the analytes was performed on a Thermo BDS HYPERSIL C18 (250 mm x 4.6 mm, 5 microm, USA) column, using a gradient elution program with solvents constituted of water (ammonium acetate: 30 mmol/l, formic acid 2.6 mmol/l and trifluoroacetic acid 0.13 mmol/l) and acetonitrile (60:40, V/V) at a flow-rate of 1.0 ml/min. All of the analytes were eluted within 6 min. The compounds were ionized in the electrospray ionization (ESI) ion source of the mass spectrometer and were detected in the selected ion recording (SIR) mode. Calibration curves in spiked whole blood were linear from 4.0-700 ng/ml, 2.0-900 ng/ml, 3.0-800 ng/ml and 2.0-700 ng/ml for VEN, ODV, NDV and DDV, respectively, all of them with coefficients of determination above 0.9991. The average extraction recoveries for all the four analytes were above 77%. The methodology recoveries were higher than 91%. The limits of detection were 0.4, 0.2, 0.3, and 0.2 ng/ml for VEN, ODV, NDV and DDV, respectively. The intra- and inter-day variation coefficients were less than 11%. The method is accurate, sensitive and reliable for the pharmacokinetic study of venlafaxine as well as therapeutic drug monitoring (TDM).  相似文献   

2.
A high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI/MS) method for simultaneous stereoselective analysis of venlafaxine (VEN) and its major metabolite O-desmethylvenlafaxine (ODV) enantiomers in human plasma has been developed and validated. Chiral chromatography is performed on the CHRIOBIOTIC V (5 microm, 250 mm x 4.6 mm) column with mobile phase constituted of 30 mmol/l ammonium acetate-methanol (15:85, pH 6.0) at a flow rate of 1.0 ml/min and a postcolumn splitting ratio of 3:1. The compounds were ionized in the electrospray ionization (ESI) ion source of the mass spectrometer and detected using the selected ion recording (SIR) mode. Calibration curves obtained from spiked plasma were linear in the range of 5.0-400 ng/ml for S-(+)-VEN and R-(-)-VEN, 4.0-280 ng/ml for S-(+)-ODV and R-(-)-ODV, respectively, with linear correlation coefficient all above 0.999. The average extraction recoveries for all the four analytes were above 76%. The methodology recoveries were higher than 92%. The limit of detection were 1.0 ng/ml for S-(+)-VEN and R-(-)-VEN, 1.5 ng/ml for S-(+)-ODV and R-(-)-ODV, respectively. The intra- and inter-day variation coefficients were less than 9%.  相似文献   

3.
Nateglinide (NTG), an insulin secretogogue, has been studied in rats for drug-drug interaction with cilostazol (CLZ), an antiplatelet agent commonly used in diabetics. We developed a liquid chromatography tandem mass spectrometry (LC-MS/MS) based method that is capable of simultaneous monitoring plasma levels of nateglinide, cilostazol, and its active metabolite 3,4-dehydro-cilostazol (DCLZ). All analytes including the internal standard (Repaglinide) were chromatographed on reverse phase C(18) column (50 mm x 4.6mm i.d., 5 microm) using acetonitrile: 2mM ammonium acetate buffer, pH 3.4 (90:10, v/v) as mobile phase at a flow rate 0.4 ml/min in an isocratic mode. The detection of analyte was performed on LC-MS/MS system in the multiple reaction monitoring (MRM) mode. The quantitations for analytes were based on relative concentration. The method was validated over the concentration range of 20-2000 ng/ml and the lower limit of quantitation was 20 ng/ml. The recoveries from spiked control samples were >79% for all analytes and internal standard. Intra- and inter-day accuracy and precision of validated method were with in the acceptable limits of <15% at all concentration. The quantitation method was successfully applied for simultaneous estimation of NTG, CLZ and DCLZ in a pharmacokinetic drug-drug interaction study in Wistar rats.  相似文献   

4.
The levels of estrogens and/or their metabolites play important roles in carcinogenesis, reproductive function, and sexual development during perinatal and adolescence periods. The main purpose of this report was to investigate the applicability of high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) with electrospray ionization (ESI) and/or atmospheric pressure chemical ionization (APCI) for simultaneous detection of estrone (E1) and its six metabolites. Both positive and negative ionization modes in ESI and APCI were used to evaluate the signal responses of seven target analytes. Among the seven target analytes, five analytes, E1, 16alpha-hydroxyestrone, 2-methoxyestrone, 4-methoxyestrone, and 2-hydroxyestrone-3-methyl, produced signals with the best signal-to-noise (S/N) ratios in positive APCI-MS/MS mode, while the other two analytes, 2-hydroxyestrone and 4-hydroxyestrone, yielded the best S/N ratios in negative ESI-MS/MS mode. Based on the results of the evaluation, HPLC-APCI-MS/MS with switching between positive and negative modes was recommended for simultaneous detection of E1 and its six metabolites. The proposed analytical scheme was successfully applied in the analysis of cell culture medium of Human liver carcinoma cells treated with varying amounts of 2,3,7,8-tetrachlorodibenzo-p-dioxin.  相似文献   

5.
Chronic administration of mood stabilizers to rats down‐regulates the brain arachidonic acid (AA) cascade. This down‐regulation may explain their efficacy against bipolar disorder (BD), in which brain AA cascade markers are elevated. The atypical antipsychotics, olanzapine (OLZ) and clozapine (CLZ), also act against BD. When given to rats, both reduce brain cyclooxygenase activity and prostaglandin E2 concentration; OLZ also reduces rat plasma unesterified and esterified AA concentrations, and AA incorporation and turnover in brain phospholipid. To test whether CLZ produces similar changes, we used our in vivo fatty acid method in rats given 10 mg/kg/day i.p. CLZ, or vehicle, for 30 days; or 1 day after CLZ washout. [1‐14C]AA was infused intravenously for 5 min, arterial plasma was collected and high‐energy microwaved brain was analyzed. CLZ increased incorporation coefficients and rates Jin,i of plasma unesterified AA into brain phospholipids i, while decreasing plasma unesterified but not esterified AA. These effects disappeared after washout. Thus, CLZ and OLZ similarly down‐regulated kinetics and cyclooxygenase expression of the brain AA cascade, likely by reducing plasma unesterified AA availability. Atypical antipsychotics and mood stabilizers may be therapeutic in BD by down‐regulating, indirectly or directly respectively, the elevated brain AA cascade of that disease.  相似文献   

6.
A comparison of the analytical performance of atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) for the quantitative determination of six urinary phytoestrogens (daidzein, O-desmethylangolensin, equol, enterodiol, enterolactone and genistein) by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) is presented here. Both APCI and ESI were suitable for the analysis of these compounds; however, ESI did improve measurement imprecision and sensitivity in certain cases. Method imprecision (between-run coefficients of variation [CVs] from duplicate analysis of three quality control [QC] urine pools across 20 runs) was 5.6-12% for ESI, as opposed to 5.3-30% for APCI. At low concentrations (3-60 ng/mL, analyte dependent) imprecision was lower with ESI, whereas both techniques were generally commensurate at high concentrations (200-1000 ng/mL, analyte dependent). Method accuracy (spiked analyte recovery from the QC pools) was comparable between techniques: 86-114% for ESI; 95-105% for APCI. Limits of detection (LODs) were equivalent or better with ESI compared to APCI, with the most significant LOD improvement observed for equol (ESI: 0.3 ng/mL; APCI: 2.7 ng/mL). This translated into a substantial increase in equol detection frequency (% of sample results above LOD) within a random patient sample subset (98% for ESI, compared to 81% for APCI, n=378). Correlation (Pearson) and agreement (Deming regression, Bland-Altman bias) between ESI and APCI results in the patient subset was better in cases where imprecision and sensitivity was similar for both techniques (daidzein, enterolactone, genistein: r=0.993-0.998; slope=0.98-1.03; bias=-4.2 to -0.8%); correlation and/or agreement was poorer for analytes, where APCI imprecision and sensitivity were inferior (equol, O-desmethylangolensin, enterodiol). Baring significant factors arising from differences in ionization source design, these observations suggest that ESI is more appropriate for urinary biomonitoring of these compounds by LC-MS/MS.  相似文献   

7.
A rapid and sensitive method for determination and screening in human plasma of talinolol is described using propranolol as the internal standard. The analytes in plasma were extracted by liquid-liquid extraction using methyl t-butyl ether. After removed and dried the upper organic phase, the extracts were reconstituted with a fixed volume of buffer of ammonium acetate and acetonitrile (60:40, v/v). The extracts were analyzed by a HPLC coupled to electrospray ionization mass spectrometry (HPLC-MS/ESI). The HPLC separation of the analytes was performed on a Phenomenex C18 (250 mmx4.6 mm, 5 microm, USA) column, with a flow rate of 0.85 mL/min. The complete elution was obtained within 5.5 min. The calibration curve was linear in the 1.0-400.0 ng/mL range for talinolol, with a coefficient of determination of 0.9996. The average extraction recovery was above 83%. The methodology recovery was between 101% and 102%. The limit of detection (LOD) was 0.3 ng/mL for talinolol. The intraday and inter-day coefficients of variation were less than 6%. This HPLC-MS/ESI procedure was used to assess the pharmacokinetics of talinolol. A single oral 50 mg dose of talinolol tablet was administered to 12 healthy Chinese volunteers, the main pharmacokinetic data are as follows: Cmax was 147.8+/-63.8 ng/mL; tmax was 2.0+/-0.7 h; t1/2 was 12.0+/-2.6 h. The method is accurate, sensitive and simple for the pharmacokinetic study of talinolol.  相似文献   

8.
A sensitive, specific and rapid liquid chromatography–mass spectrometry (LC–MS) method has been developed and validated for the simultaneous determination of xanthotoxin (8-methoxypsoralen), psoralen, isoimpinellin (5,8-dimethoxypsoralen) and bergapten (5-methoxypsoralen) in rat plasma using pimpinellin as an internal standard (IS). The plasma samples were pretreated by protein precipitation with methanol and chromatographic separation was performed on a C18 column with a mobile phase composed of 1 mmol ammonium acetate and methanol (30:70, v/v). The detection was accomplished by multiple-reaction monitoring (MRM) scanning via electrospray ionization (ESI) source operating in the positive ionization mode. The optimized mass transition ion-pairs (m/z) for quantitation were 217.1/202.1 for xanthotoxin, 187.1/131.1 for psoralen, 247.1/217.0 for isoimpinellin, 217.1/202.1 for bergapten, and 247.1/231.1 for IS. The total run time was 6 min between injections. The calibration curves were linear over the investigated concentration range with all correlation coefficients higher than 0.998. The lower limits of quantitation (LLOQ) of these analytes were less than 1.21 ng/ml. The intra- and inter-day RSD were no more than 9.7% and the relative errors were within the range of ?8.1% to 4.5%. The average extraction recoveries for all compounds were between 90.7% and 106.2%. The proposed method was further applied to the determination of actual plasma samples from rats after oral administration of Radix Glehniae extract.  相似文献   

9.
A simple, fast and sensitive high-performance liquid chromatography (HPLC)-mass spectrometric (MS) method has been developed for simultaneous determination of amoxicillin and clavulanic acid in human plasma using terbutaline as internal standard. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a C(8) reversed-phase column with formic acid-water-acetonirile (2:1000:100) and detected using electrospray ionization (ESI) mass spectrometry in negative selected ion monitoring (SIM) mode. The method was validated and successfully applied to analysis of amoxicillin and clavulanic acid in clinical studies. The limit of quantitation, 0.12 microg/ml for amoxicillin and 0.062 microg/ml for clavulanic acid, was five times lower than that of the published HPLC-UV method.  相似文献   

10.
The collection of oral fluid for drug testing is easy and non-invasive. This study developed a drug testing method using ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) in selected-reaction monitoring (SRM) mode. We tested the method on the analysis of four opiates and their metabolites, five amphetamines, flunitrazepam and its two metabolites, and cocaine and its four metabolites in oral fluid. 100-μL samples of oral fluid were diluted with twice the amount of water then spiked with isotope-labeled internal standards. After the samples had undergone high-speed centrifugation for 20 min, we analyzed the supernatant. The recovery of the sample preparation ranged from 81 to 108%. We compared the performance of electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). The ion suppression of most analytes on ESI (28-78%) was lower than that of APCI and APPI. A post-column flow split (5:1) did not reduce the matrix effect on ESI. Direct APPI performed better than dopant-assisted APPI using toluene. ESI, APCI and APPI limits of quantitation mostly ranged from 0.11 to 1.9 ng/mL, 0.02 to 2.2 ng/mL and 0.02 to 2.1 ng/mL, respectively, but were much higher on amphetamine and ecgonine methyl ester (about 2.7-4.7 ng/mL, 8.7-14 ng/mL, and 10-19 ng/mL, respectively). Most of the bias percentages (accuracy) and relative standard deviations (precision) on spiked samples were below 15%. This method greatly simplifies the process of sample preparation and shortens the chromatographic time to only 7.5 min per run and is able to detect analytes at sub-ppb levels.  相似文献   

11.
A sensitive, specific and rapid HPLC-MS/MS method has been developed and validated for the simultaneous determination of cytarabine and valcytarabine (valyl prodrug of cytarabine) in rat plasma in the present study. The analytes were separated on a C18 column (50 mm x 2.1 mm, 1.7 microm) and a triple-quadrupole mass spectrometry equipped with an electrospray ionization (ESI) source was applied for detection. Cation exchange solid-phase extraction cartridge was employed to extract the analytes from rat plasma, with high recovery of cytarabine (>85%). The method was linear over the concentration ranges of 10-20,000 ng/mL for cytarabine and 25-1000 ng/mL for valcytarabine. The lower limit of quantitation (LLOQ) of cytarabine and valcytarabine was 10 and 25 ng/mL, respectively. The intra-day and inter-day relative standard deviation (RSD) were less than 15% and the relative error (RE) were all within 15%. Finally, the method was successfully applied to support the prodrug pharmacokinetic study after valcytarabine and cytarabine were orally administrated to the Sprague-Dawley rat, respectively.  相似文献   

12.
In order to discriminate selegiline (SG) use from methamphetamine (MA) use, the urinary metabolites of SG users have been investigated using high-performance liquid chromatography (HPLC)–electrospray ionization mass spectrometry (HPLC–ESI–MS). Selegiline-N-oxide (SGO), a specific metabolite of SG, was for the first time detected in the urine, in addition to other metabolites MA, amphetamine (AP) and desmethylselegiline (DM-SG). A combination of a Sep-pak C18 cartridge for the solid-phase extraction, a semi-micro SCX column (1.5 mm I.D.×150 mm) for HPLC separation and ESI–MS for detection provided a simple and sensitive procedure for the simultaneous determination of these analytes. Acetonitrile–10 mM ammonium formate buffer adjusted to pH 3.0 (70:30, v/v) at a flow-rate of 0.1 ml/min was found to be the most effective mobile phase. Linear calibration curves were obtained over the concentration range from 0.5 to 100 ng/ml for all the analytes by monitoring each protonated molecular ion in the selected ion monitoring (SIM) mode. The detection limits ranged from 0.1 to 0.5 ng/ml. Upon applying the scan mode, 10–20 ng/ml were the detection limits. Quantitative investigation utilizing this revealed that SGO was about three times more abundant (47 ng/ml, 79 ng/ml) than DM-SG in two SG users’ urine samples tested here. This newly-detected, specific metabolite SGO was found to be an effective indicator for SG administration.  相似文献   

13.
A pre-column dansylated ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-MS/MS) method for simultaneous determination of risperidone (RIP), 9-hydroxyrisperidone (9-OH-RIP), monoamine and amino acid neurotransmitters in human urine was developed with the aim of providing data on how neurotransmitters may influence each other or change simultaneously in response to risperidone treatment. MultiSimplex based on the simplex algorithm and the fuzzy set theory was applied to the optimization of chromatographic separation and dansyl derivatization conditions during method development. This method exhibited excellent linearity for all the analytes with regression coefficients higher than 0.997. The lower limit of quantification (LLOQ) values for 9-OH-RIP and RIP were 0.11 and 0.06 ng/ml, respectively, and for neurotrasmitters ranged from 0.31 to 12.8 nM. The mean accuracy ranged from 94.7% to 108.5%. The mean recovery varied between 81.6% and 97.5%. All the RSD of precision and stability were below 9.7%. Finally, the optimized method was applied to analyze the first morning urine samples of schizophrenic patients treated with risperidone and healthy volunteers.  相似文献   

14.
A new procedure has been described for the extraction of diclazuril (DIZ), toltrazuril (TOZ) and its two main metabolites toltrazuril sulphoxide (TZSO) and toltrazuril sulphone (TZS) from poultry tissues and eggs, using gel permeation chromatography (GPC). The analytes and the deuterated internal standard were extracted from the samples with ethyl acetate. The analytes were measured by LC coupled to an electrospray ionization tandem mass spectrometer operating in the negative ion mode. Excellent linear dynamic range was observed from 1 to 500 μg/L with the correlation coefficients (R(2)) better than 0.99 for all analytes. The method LOQ of the four analytes in real samples was 1.2 μg/kg for DIZ and TOZ, and 1.8 μg/kg for TZSO and TZS. These values are far lower than the maximum residue limits (MRLs) established by several control authorities. The developed method was accurate with overall recoveries in four matrices.  相似文献   

15.
A rapid, sensitive and reliable high-performance liquid chromatographic-mass spectrometric method for the detection of 25 diuretics in human urine has been developed. Atmosphere pressure chemical ionization (APCI) and electrospray ionization (ESI) modes were evaluated. A 2-ml volume of urine was extracted under basic conditions and separated on an Agilent Zorbax SB-C(18) column (150 x 2.1 mm, 5 microm). The mobile phase consisted of formic ammonium-formic acid buffer (pH 3.5) and acetonitrile. The effects of capillary temperature, sheath gas pressure and compositions of mobile phase on the sensitivity were studied. The recoveries of most of the diuretics were 75-95%. In the full scan mode, the limits of detection of the 25 diuretics were 0.25-25 ng/ml for APCI and 0.6-250 ng/ml for ESI. Under the optimal conditions, 14 diuretics from authentic urine samples were detected successfully by LC-APCI-MS. To obtain more fragmentation information on the chemical structure for positive confirmation, tandem mass analysis was also investigated.  相似文献   

16.
Liquid chromatography-mass spectrometry (LC-MS) using atmospheric pressure ionization is drastically different from hitherto available analytical methods used to detect polar analytes. The electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) sources of MS have contributed to the advancement of LC-MS and LC-MS/MS techniques for the analysis of biological samples. However, one major obstacle is the weak ionization of some analytes in the ESI and APCI techniques. In this review, we introduce high-sensitivity methods using several derivatization reagents for ionization enhancement. We also present an overview of chemical derivatization methods that have been applied to small molecules, such as amino acids and steroids, in biological samples.  相似文献   

17.
A rapid, sensitive and selective high-performance liquid chromatography-tandem mass spectrometric method (HPLC-MS) was developed and validated to determine the 14-(3-methylbenzyl)matrine (3MBM) and 14-(4-methylbenzyl)matrine (4MBM) levels in rat plasma in the present study. The analytes were separated using a C18 column (1.9 μm, 2.1 mm × 100 mm) equipped with a Security Guard C18 column (5 μm, 2.1 mm × 10 mm), followed by detection via triple-quadrupole mass spectrometry using an electrospray ionization (ESI) source. Sample pretreatment involved one-step protein precipitation with isopropanol:ethyl acetate (v/v, 25:75), and pseudoephedrine hydrochloride was used as an internal standard. The method was linear in the concentration range of 5–2000 ng/ml for both compounds. The intra-day and inter-day relative standard deviations (RSDs) were less than 15%, and all relative errors (REs) were within 15%. The proposed method enables the unambiguous identification and quantification of these two compounds in vivo. This study is the first to determine the 3MBM and 4MBM levels in rat plasma after oral administration of these compounds. These results provide a meaningful basis for evaluating the clinical applications of these medicines.  相似文献   

18.
A rapid on-line solid phase extraction/liquid chromatography/tandem mass spectrometry (SPE/LC/MS/MS) method using restricted access material (RAM) was developed for the simultaneous determination of eight organophosphorus triesters in untreated human blood plasma. In a process involving column-switching techniques, the analytes were enriched on the RAM column, separated using a C-18 analytical column and detected with LC/MS. Tandem mass spectrometry was used to characterize and quantify the analytes. To elucidate the fragmentation pathway of a number of the analytes, MS3 experiments using an ion trap mass spectrometer were performed. The matrix effects associated with using APCI and ESI interfaces were investigated. The recoveries obtained were in the range 60-92% (R.S.D.<6%), with estimated detection limits between 0.2 and 1.8 ng/ml of plasma, and the total analysis time was 27 min.  相似文献   

19.
Analytical method for the simultaneous determination of dextromethorphan (1) and dextrorphan (2) in urine, based on solid-phase extraction of drug from acidified hydrolyzed biological matrix, were developed. The analytes (1 and 2) and the internal standard (levallorphan, 3, IS) were detected by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) in positive ionization mode using a heated nebulizer (HN) probe and monitoring their precursor-->product ion combinations of m/z 272-->215, 258-->201, and 284-->201 for 1, 2, and 3, respectively, in multiple reaction monitoring mode. The analytes and IS were chromatographed on a Keystone Prism reverse phase (50 mm x 2.0 mm) 5 microm column using a mobile phases consisting of a 35/65 or 27/73 mixtures of methanol/water containing 0.1% TFA adjusted to pH 3 with ammonium hydroxide pumped at 0.4 ml/min for 1 and 2, respectively. The limits of reliable quantification of 1 and 2 were 2 and 250 ng/ml, respectively, when 1 ml of urine was processed. The absence of matrix effect was demonstrated by analysis of neat standards and standards spiked into urine extracts originating from five different sources. The linear ranges of the assay were 2-200 and 250-20,000 ng/ml for 1 and 2, respectively. Assay selectivity was evaluated by monitoring the "cross-talk" effects from other metabolites into the MS/MS channels used for monitoring 1, 2, and 3. In addition, an interfering peak originating from an unknown metabolite of 1 into the quantification of dextromethorphan was detected, requiring an effective chromatographic separation of analytes from other metabolites of 1. The need for careful assessment of selectivity of the HPLC-MS/MS assay in the presence of metabolites, and the assessment of matrix effect, are emphasized.  相似文献   

20.
A specific, sensitive and rapid method based on high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) was developed for the simultaneous determination of olmesartan (OLM) and hydrochlorothiazide (HCTZ) in human plasma and urine. Solid-phase extraction (SPE) was used to isolate the analytes from biological matrices followed by injection of the extracts onto a C18 column with isocratic elution. Detection was carried out on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring (MRM) mode using negative electrospray ionization (ESI). The method was validated over the concentration range of 1.00–1000 ng/mL and 5.00–5000 ng/mL for OLM in human plasma and urine as well as 0.500–200 ng/mL and 25.0–25,000 ng/mL for HCTZ in human plasma and urine, respectively. Inter- and intra-run precision of OLM and HCTZ were less than 15% and the accuracy was within 85–115% for both plasma and urine. The average extraction recoveries were 96.6% and 92.7% for OLM, and 87.2% and 72.1% for HCTZ in human plasma and urine, respectively. The linearity, recovery, matrix effect and stability were validated for OLM/HCTZ in human plasma and urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号