首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transmembrane protein tyrosine phosphatase CD45 is required for Ag receptor signal transduction in lymphocytes. Recently, a role for CD45 in the regulation of macrophage adhesion has been demonstrated as well. To investigate further the role of CD45 in the regulation of adhesion, we examined integrin-mediated adhesion to fibronectin of two T cell lines and their CD45-deficient variants. The absence of CD45 correlated with enhanced adhesion to fibronectin via integrin alpha5beta1 (VLA-5), but not alpha4beta1 (VLA-4) in both cell lines. Adhesion returned to normal levels upon transfection of wild-type CD45 into the CD45-deficient lines. Transfection of chimeric or mutant molecules expressing some, but not all, CD45 domains and activities demonstrated that both the transmembrane domain and the tyrosine phosphatase activity of CD45 were required for regulation of integrin-dependent adhesion, but the highly glycosylated extracellular domain was dispensable. In contrast, only a catalytically active CD45 cytoplasmic domain was required for TCR signaling. Transfectants that restored normal levels of adhesion to fibronectin coimmunoprecipitated with the transmembrane protein known as CD45-associated protein. These studies demonstrate a novel role for CD45 in adhesion regulation and suggest a possible function for its association with CD45-associated protein.  相似文献   

2.
A mouse mAb, TS 43, which recognized the human CD5 molecule, was found to induce the proliferation of human peripheral blood T cells. TS 43 mAb precipitated from 125I-radiolabeled T cells a 67-kDa band, which comigrated with the 67-kDa band precipitated by the anti-CD5 mAb OKT1. Preclearing of cell lysates with OKT1 mAb abolished the capacity of TS 43 mAb to precipitate radiolabeled material from T cell lysates. Furthermore, a mouse T cell hybridoma transfected with human CD5 was stained by TS 43 mAb. T cell proliferation mediated by TS 43 mAb was monocyte dependent, and was accompanied by IL-2R expression and by IL-2 synthesis. T cell activation by TS 43 mAb involved a rise in intracellular calcium level (CA2+)i and was dependent on the expression of the TCR/CD3 complex because no rise in (Ca2+)i was observed in a TCR-beta-deficient Jurkat T cell mutant. This study indicates that CD5 should be added to the list of surface molecules that can signal T cells to proliferate.  相似文献   

3.
The anti-CD20 monoclonal antibody (mAb) rituximab is now routinely used for the treatment of non-Hodgkins lymphoma and is being examined in a wide range of other B-cell disorders, such as rheumatoid arthritis. Despite intensive study, the mechanism of action still remains uncertain. In the current study, anti-CD20 mAb-induced calcium signaling was investigated. Previously, we grouped anti-CD20 mAbs into Type I (rituximab-like) and Type II (B1-like) based upon various characteristics such as their ability to induce complement activation and redistribute CD20 into detergent-insoluble membrane domains. Here we show that only Type I mAbs are capable of inducing a calcium flux in B cells and that this is tightly correlated with the expression of the B-cell antigen receptor (BCR). Inhibitor analysis revealed that the signaling cascade employed by CD20 was strikingly similar to that utilized by the BCR, with inhibitors of Syk, Src, and PI3K, but not EGTA, p38, or ERK1/2, completely ablating calcium flux. Furthermore, binding of Type I but not Type II mAbs caused direct association of CD20 with the BCR as measured by FRET and resulted in the phosphorylation of BCR-specific adaptor proteins BLNK and SLP-76. Crucially, variant Ramos cells lacking BCR expression but with unchanged CD20 expression were completely unable to induce calcium flux following ligation of CD20. Collectively, these data indicate that CD20 induces cytosolic calcium flux through its ability to associate with and "hijack" the signaling potential of the BCR.  相似文献   

4.
Induction of central deletional T cell tolerance by gene therapy   总被引:4,自引:0,他引:4  
Transgenic mice expressing an alloreactive TCR specific for the MHC class I Ag K(b) were used to examine the mechanism by which genetic engineering of bone marrow induces T cell tolerance. Reconstitution of lethally irradiated mice with bone marrow infected with retroviruses carrying the MHC class I gene H-2K(b) resulted in lifelong expression of K(b) on bone marrow-derived cells. While CD8 T cells expressing the transgenic TCR developed in control mice reconstituted with mock-transduced bone marrow, CD8 T cells expressing the transgenic TCR failed to develop in mice reconstituted with H-2K(b) transduced bone marrow. Analysis of transgene-expressing CD8 T cells in the thymus and periphery of reconstituted mice revealed that CD8 T cells expressing the transgenic TCR underwent negative selection in the thymus of mice reconstituted with K(b) transduced bone marrow. Negative selection induced by gene therapy resulted in tolerance to K(b). Thus, genetic engineering of bone marrow can be used to alter T cell education in the thymus by inducing negative selection.  相似文献   

5.
T7 lysozyme inhibits transcription by T7 RNA polymerase   总被引:40,自引:0,他引:40  
B A Moffatt  F W Studier 《Cell》1987,49(2):221-227
  相似文献   

6.
Induction and maintenance of Ag-specific tolerance are pivotal for immune homeostasis, prevention of autoimmune disorders, and the goal of transplantation. Recent studies suggest that certain cytokines, notably IL-10 and TGF-beta, may play a role in down-regulating immune functions. To further examine the role of cytokines in Ag-specific hyporesponsiveness, murine CD4+ T cells were exposed ex vivo to alloantigen-bearing stimulators in the presence of exogenous IL-10 and/or TGF-beta. Primary but not secondary alloantigen proliferative responses were inhibited by IL-10 alone. However, the combined addition of IL-10 + TGF-beta markedly induced alloantigen hyporesponsiveness in both primary and secondary MLR cultures. Alloantigen-specific hyporesponsiveness was observed also under conditions in which nominal Ag responses were intact. In adoptive transfer experiments, IL-10 + TGF-beta-treated CD4+ T cells, but not T cells treated with either cytokine alone, were markedly impaired in inducing graft-vs-host disease alloresponses to MHC class II disparate recipients. These data provide the first formal evidence that IL-10 and TGF-beta have at least an additive effect in inducing alloantigen-specific tolerance, and that in vitro cytokines can be exploited to suppress CD4+ T cell-mediated Ag-specific responses in vivo.  相似文献   

7.
Intracellular pathogens are subject to elimination by a cellular immune response, and were therefore under evolutionary pressure to develop mechanisms that allow them to inhibit especially this arm of immunity. CD137, a T cell costimulatory molecule, and its ligand, CD137 ligand (CD137L), which is expressed on antigen presenting cells (APC), are potent drivers of cellular cytotoxic immune responses. Here, we report that different viruses usurp a negative feedback mechanism for the CD137–CD137L system that weakens cellular immune responses. Latent membrane protein (LMP)-1 and Tax, oncogenes of Epstein-Barr virus (EBV), and human T-cell lymphotropic virus (HTLV)-1, respectively, induce the expression of CD137. CD137 is transferred by trogocytosis to CD137L-expressing APC, and the CD137–CD137L complex is internalized and degraded, resulting in a reduced CD137-mediated T cell costimulation and a weakened cellular immune response which may facilitate the escape of the virus from immune surveillance. These data identify the usurpation of a CD137-based negative feedback mechanism by intracellular pathogens that enables them to reduce T cell costimulation.  相似文献   

8.
Previous studies have shown that the injection of parental T cells into MHC class II mismatched F1 recipient mice can lead to graft-vs-host (GvH) reaction that manifests itself by multiple symptoms. The objective of our study was to analyze GvH reactivity induced by a single T cell clone specific for host I-A or I-E alloantigen. The T cell clones tested for GvH potential were CD4+, with or without cytolytic activity in vitro and with a lymphokine pattern that classifies them as Th1 cells. The inoculation of a single T cell clone induced a severe, but transient immunodeficiency in the host that was independent of its cytolytic activity, as demonstrated by the failure to generate a CTL response to third party allogeneic cells in vitro. Induction of immunodeficiency in the recipients required preactivation of the clones in vitro by rIl-2 and the presence of the stimulator class II alloantigen in the host. Spleen cells from these mice lacked suppressor cells, they were deficient in Il-2 secretion and exhibited a decrease in the number of CD4+ T cells. In addition, I-E expression was reduced, however, without any changes in the macrophage population and an increase in surface Ig and the B cell marker B220. Simultaneous to the immunodeficiency, the clone-injected mice produced elevated antibody titers to ssDNA.  相似文献   

9.
Dendritic cells are pivotal antigen-presenting cells for generating adaptive T-cell responses. Here, we show that dendritic cells belonging to either the myeloid-related or lymphoid-related subset are permissive for infection by mouse polyomavirus and, when loaded with a peptide corresponding to the immunodominant anti-polyomavirus CD8(+) T-cell epitope or infected by polyomavirus, are each capable of driving expansion of primary polyomavirus-specific CD8(+) T-cell responses in vivo.  相似文献   

10.
We have investigated the role of CD2 molecules in Ag-specific T cell activation by using a mouse model system in which the function of CD2 can be analyzed without the apparent influence of major accessory molecules, such as CD4 or LFA-1. Transfection of the CD2 gene into a CD2- T cell hybridoma confers the enhancement of IL-2 production upon Ag stimulation. Anti-CD2 mAb inhibits the Ag-specific response of the CD2-transfectant, not only to the level of CD2- cells but to the background. B cells, but not MHC class II-transfected L cells, serve as APC to induce the inhibition of Ag response. The complete abrogation of the response is observed only upon the stimulation through TCR with Ag in the presence of APC but not through either TCR-CD3 or other molecules such as Thy-1. Furthermore, the inhibition can also be observed when anti-CD2 mAb is immobilized on culture plates, suggesting that the inhibition of Ag response results from transducing the negative signal through the CD2 molecule. The experiments on cytoplasmic domain-deleted CD2-transfected T cells reveal that the cytoplasmic portion is responsible for the CD2-mediated abrogation of Ag responses. These results imply that CD2 has important roles in T cell responses not only as an activation and adhesion molecule but also as a regulatory molecule of Ag-specific responses through the TCR.  相似文献   

11.
Previous work from our laboratory described a human T cell soluble ligand that inhibited T cell proliferative responses to mitogen and alloantigen by interacting with CD7 and/or the receptor for the IgM-Fc portion (FcR mu) on T cells. In this report, we used mouse anti-human CD7 monoclonal antibodies (mAb) and purified human IgM (HIgM) to substitute for the human ligand and examined the possible involvement of these receptors in the inhibition of T cell proliferation. Preincubation of human T cells with mouse anti-CD7 mAb, HIgM, mouse anti-human IgM (MAH IgM) alone, or any of these combinations as a primary antibody did not inhibit mitogen- or alloantigen-induced T cell replication. Similar effects were seen with the pretreatment of T cells with an irrelevant negative control primary mAb or a secondary-step goat anti-mouse immunoglobulin (GAM Ig), goat anti-human IgM-Fc (GAH Fc mu), or both. In contrast, the pretreatment of T cells with anti-CD7 and/or HIgM followed by the appropriate secondary-step crosslinking antibody significantly reduced their proliferative responses to mitogen and alloantigen. Similarly, crosslinking of CD7 and FcR mu on human transformed T cell lines inhibited their spontaneous proliferation. The inhibitory effect of crosslinking CD7 and FcR mu was not due to cytotoxic effects of these antibodies and appears to be temperature sensitive. These findings suggest that crosslinking CD7 and/or FcR mu appears to have a novel role in down-regulating T cell proliferation.  相似文献   

12.
The CD7 molecule is a differentiation antigen found on the surface of T lymphocytes and also on a very minor fraction of acute nonlymphocytic leukemia (ANLL). To study the genomic structure of the CD7 gene, two clones (SY4 and SY22) were isolated by screening a genomic library with a CD7 cDNA probe. Restriction mapping of these two phage clones showed that both overlapped each other, covering a total length of 23 kilobases (kb). Transfection of mouse L cells demonstrated that SY22 contains the gene expressing the CD7 antigen reactive with monoclonal CD7 antibody (Tp40), while SY4 does not. Subcloning of a 10.5 kb fragment from a 14.4 kb insert of SY22 contained the structural gene for the CD7 antigen. Detailed restriction mapping and partial sequence analysis revealed the CD7 gene to consist of four exons. By RNase protection assay, multiple initiation sites — 122 base pairs (bp) to — 38 bp from ATG translation initiation site were demonstrated. The promoter region had high G+C content and contained two SP1 binding sites (CCGCCC) and an AP2 binding site (CCCCAGGC), but lacked CAAT and TATA motifs.  相似文献   

13.
14.
Enhancement of CD8+ T cell responses by ICOS/B7h costimulation.   总被引:17,自引:0,他引:17  
Although the recently identified ICOS/B7h costimulatory counterreceptors are critical regulators of CD4(+) T cell responses, their ability to regulate CD8(+) responses is unclear. Here we report using a tumor-rejection model that ectopic B7h expression can costimulate rejection by CD8(+) T cells in the absence of CD4(+) T cells. Although responses of naive T cells were significantly augmented by priming with B7h, B7h was surprisingly effective in mobilizing recall responses of adoptively transferred T cells. To explore why secondary responses of CD8(+) T cells were particularly enhanced by B7h, kinetics of ICOS up-regulation, proliferative responses, and cytokine production were compared from both naive and rechallenged 2C-transgenic T cells costimulated in vitro. Although B7h costimulated proliferative responses from both CD8(+) populations, rechallenged cells were preferentially costimulated for IL-2 and IFN-gamma production. These results indicate that ICOS/B7h counterreceptors likely function in vivo to enhance secondary responses by CD8(+) T cells.  相似文献   

15.
16.
17.
We have examined transmembrane signaling events via the TCR/CD3 complex (TCR/CD3) at various stages of T cell development for evidence of developmental regulation. Engagement of TCR/CD3 induced defective activation of phospholipase C (PLC) in thymocytes relative to peripheral blood T lymphocytes. The defect in PLC activation via TCR/CD3 was restricted to immature thymocytes (CD3low, CD4+CD8+). Mature thymocytes (CD3high, CD4+CD8-/CD8+CD4-) were similar to PBL in signaling via TCR/CD3. Both immature and mature thymocytes expressed a similar profile of PLC isoenzyme mRNA species, indicating that the defect in signaling in immature thymocytes was not due to altered expression of PLC isoenzymes. Activation of tyrosine phosphorylation pathways implicated in the coupling of TCR/CD3 to PLC was impaired in immature thymocytes, as evidenced by depressed phosphorylation of CD3 zeta subunit after stimulation with anti TCR/CD3 mAb. This was associated with lower levels of p59fyn tyrosine kinase and minimal or undetectable stimulus-induced kinase activation in immature thymocytes relative to mature thymocytes. We conclude that the capacity to signal via TCR/CD3 is regulated during T cell development by mechanisms acting at the level of TCR/CD3-associated tyrosine phosphorylation pathways.  相似文献   

18.
19.
Pertussis toxin (PTX) has pronounced adjuvant activity and strongly enhances innate and adaptive immune responses, including increased antibody production and Th1/Th2 cytokine production. Adjuvant effects of PTX on Th1 and Th2 cells are primarily mediated via CD80/86 costimulation via enhanced expression of these molecules by APCs. However, it has remained unresolved whether PTX modulates the expression of costimulatory and inhibitory molecules on CD4+ and CD8+ T cells. To address this question, we determined the expression kinetics of CD28, CTLA-4, and CD40L on spleen CD4+ and CD8+ T cells after incubation with PTX. The results show that PTX upregulated the expression of CD28 by CD8+ T cells, but not by CD4+ T cells. In contrast, the expression of CTLA-4 and CD40L was not substantially altered on CD4+ or CD8+ T cells. CD28 upregulation by CD8+ T cells was paralleled by upregulation of CD69 and the induction of IFN-γ, Granzyme B (GrB), and IL-17. CD8+ T cell activation and cytokine production could be substantially blocked with anti-CD80 and CD86 antibodies, consistent with CD28 mediated signaling. Treatment of highly purified CD8+ T cells with PTX resulted in upregulation of CD28 and CD69, and production of IFN-γ. Incubation with CD28 mAb further enhanced this effect, suggesting that PTX has direct effects on CD8+ T cells which are enhanced by CD80/86-mediated costimulation provided by APCs.  相似文献   

20.
The MHC Ag Qa-2 is a glycolipid anchored class I molecule expressed at high levels on all peripheral T lymphocytes. In this study we found that anti-Qa-2 antibodies could stimulate the proliferation of murine T cells in vitro. Anti-Qa-2-induced proliferation required secondary cross-linking with anti-Ig antibody and the presence of PMA. Only Qa-2+ strains could be induced to proliferate by anti-Qa-2 antibody, but under the conditions employed, anti-CD3 could induce proliferation in Qa-2+ and Qa-2-strains. Interestingly, only anti-Qa-2 reagents directed against the alpha 3 domain of the Qa-2 class I molecule were effective in inducing proliferation. Furthermore, unlike purified CD4+ cells, purified CD8+ cells were unable to be stimulated by the anti-Qa-2 antibodies. These results lead to the inclusion of Qa-2 in a group of physiologically relevant, glycolipid-anchored, cell-surface molecules, mobilization of which can generate signals that initiate the proliferation of T cells. Such molecules may play a secondary role in cellular activation after the primary engagement of the TCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号