首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fly》2013,7(6):300-302
Mutagenesis with ethylmethanesulfonate (EMS) has been the standard for traditional genetic screens, and in recent years has been applied to reverse genetics. However, reverse-genetic strategies require maintaining a viable germline library so that mutations that are discovered can subsequently be recovered. In applying our TILLING (Targeting Induced Local Lesions IN Genomes) method to establish a Drosophila reverse-genetic service (Fly-TILL), we chose to screen the Zuker lines, a large collection of EMS-mutagenized second- and third-chromosome balanced lines that had been established for forward-genetic screening. For the past four years, our Fly-TILL service has screened this collection to provide ~150 allelic series of point mutations for the fly community. Our analysis of >2000 point mutations and indels has provided a glimpse into the population dynamics of this valuable genetic resource. We found evidence for selection and differential recovery of mutations, depending on distance from balancer breakpoints. Although this process led to variable mutational densities, we have nevertheless been able to deliver valuable mutations in genes selected by Fly-TILL users. We anticipate that our findings will help guide the future implementation of point-mutation resources for the Drosophila community.  相似文献   

2.
TILLING技术在植物功能基因组及育种中的应用   总被引:2,自引:0,他引:2  
汪得凯  孙宗修  陶跃之 《遗传学报》2006,33(11):957-964
随着拟南芥、水稻等模式植物基因组测序计划的全面完成,数据库中大量的DNA序列需要进行功能注释,而用传统的正向遗传学进行基因克隆和近年来发展的反向遗传学(如插入突变、反义RNA、RNAi等技术)方法已不能适应基因组学的发展需求,因此,研发大规模、高通量的基因功能分析方法成为当务之急。TILLING技术(Targeting induced local lesions in genomes)就是在基因组生物学大背景下出现的一种全新的反向遗传学技术。TILLING技术的基本步骤是通过化学诱变方法产生一系列点突变,经过PCR扩增放大和变性复性过程产生异源双链DNA分子,再通过特异性酶切和双色电泳分析识别异源双链中错配碱基,从而检测出突变发生的准确位置。由于具有高通量、大规模、高灵敏度和自动化等特点,能够适应植物功能基因组学研究的要求,TILLING技术已经和即将在功能基因组领域发挥越来越重要的作用。TILLING技术应用于已测序完成的拟南芥和水稻中的突变位点检测并取得了巨大成功;TILLING技术应用于农作物的品种改良,可以帮助实现快速、定向改良作物的品种,同时由于TILLING采用的化学诱变技术与传统诱变育种并无二致,因此在作物改良中采用TILLING技术不存在外源基因转入引发的转基因作物(GMO)争论;由TILLING技术发展来的EcoTILLING技术,具有通量高、成本低、定位准确等优点,可以很好地进行多态性检测和研究基因的功能,已成为开展物种DNA多态性检测和不同物种演替进化研究的有力工具。本文简要介绍了TILLING的原理及操作步骤,讨论了TILLING技术的特点和优点及TILLING技术的应用前景。  相似文献   

3.
TILLING (Targeting induced local lesions in genomes) is a general reverse-genetic strategy that is used to locate an allelic series of induced point mutations in genes of interest. High-throughput TILLING allows the rapid and cost-effective detection of induced point mutations in populations of chemically mutagenized individuals. The technique can be applied not only to model organisms but also to economically important organisms in plants. Owing to its full of advantages such as simple procedure, high sensitivity, and high efficiency, TILLING provides a powerful approach for gene discovery, DNA polymorphism assessment, and plant improvement. Coupled with other genomic resources, TILLING and EcoTILLING can be used immediately as a haplotyping tool in plant breeding for identifying allelic variation in genes exhibiting expression correlating with phenotypes and establishing an allelic series at genetic loci for the traits of interest in germplasm or induced mutants.  相似文献   

4.
The majority of genes of multicellular organisms encode proteins with functions that are not required for viability but contribute to important physiological functions such as behavior and reproduction. It is estimated that 75% of the genes of Drosophila melanogaster are nonessential. Here we report on a strategy used to establish a large collection of stocks that is suitable for the recovery of mutations in such genes. From approximately 72,000 F(3) cultures segregating for autosomes heavily treated with ethyl methanesulfonate (EMS), approximately 12,000 lines in which the treated second or third chromosome survived in homozygous condition were selected. The dose of EMS induced an estimated rate of 1.2-1.5 x 10(-3) mutations/gene and predicts five to six nonessential gene mutations per chromosome and seven to nine alleles per locus in the samples of 6000 second chromosomes and 6000 third chromosomes. Due to mosaic mutations induced in the initial exposure to the mutagen, many of the lines are segregating or are now fixed for lethal mutations on the mutagenized chromosome. The features of this collection, known as the Zuker collection, make it a valuable resource for forward and reverse genetic screens for mutations affecting a wide array of biological functions.  相似文献   

5.
Mutagenesis screens are a valuable method to identify genes that are required for normal development. Previous mouse mutagenesis screens for lethal mutations were targeted at specific time points or for developmental processes. Here we present the results of lethal mutant isolation from two mutagenesis screens that use balancer chromosomes. One screen was localized to mouse chromosome 4, between the STS markers D4Mit281 and D4Mit51. The second screen covered the region between Trp53 and Wnt3 on mouse chromosome 11. These screens identified all lethal mutations in the balancer regions, without bias towards any phenotype or stage of death. We have isolated 19 lethal lines on mouse chromosome 4, and 59 lethal lines on chromosome 11, many of which are distinct from previous mutants that map to these regions of the genome. We have characterized the mutant lines to determine the time of death, and performed a pair-wise complementation cross to determine if the mutations are allelic. Our data suggest that the majority of mouse lethal mutations die during mid-gestation, after uterine implantation, with a variety of defects in gastrulation, heart, neural tube, vascular, or placental development. This initial group of mutants provides a functional annotation of mouse chromosomes 4 and 11, and indicates that many novel developmental phenotypes can be quickly isolated in defined genomic intervals through balancer chromosome mutagenesis screens.  相似文献   

6.
Recessive lethal mutations and mutations at the gol-1 locus were induced in the zebrafish by exposure of mature sperm to the alkylating agent ethyl nitrosourea (ENU). Embryonic lethal phenotypes were recognized among the parthenogenetic progeny of mutagenized animals or among the progeny of daughters of mutagenized animals. Novel specific locus mutations were identified by the failure of mutagenized chromosomes to complement pre-existing mutant alleles at the gol-1 locus. Each mutagenized individual harboured approximately 10 embryonic lethal mutations in its germ line and about 1 in 500 mutagenized animals harboured a new mutation at the gol-1 locus. Three lines of evidence indicate that the majority of mutations that were recovered following treatment of mature sperm with ENU were probably point mutations. First, the soma and germ lines of mutagenized animals were mosaic, as expected following simple alkylation of sperm DNA. Second, mutations induced by ENU at the gol-1 locus affected pigmentation but not viability, unlike the majority of mutations induced at this locus with gamma-irradiation. Third, the ratio of specific locus:recessive lethal mutations induced by ENU was approximately 50-fold lower than the ratio observed following mutagenesis with gamma-rays. Comparison of the incidence with which embryonic recessive lethal mutations were induced with the incidence with which specific locus mutations arose indicates that there are greater than 5000 genes essential to the development and viability of the zebrafish embryo.  相似文献   

7.
Vinton Thompson 《Genetics》1977,85(1):125-140
Most biologists beleive that recombination speeds response to selection for traits determined by polygenic loci. To test this hypothesis, sixteen Drosophila melanogaster populations were selected for positive phototaxis for twenty-one generations. In some populations, balancer chromosomes were used to suppress autosomal recombination, and in others the autosomes were free to recombine. Suppression of recombination had no effect on mean rate of response to selection, though it may have increased variability in the rate of response among replicate lines. Suppressed recombination lines did not shift selection response to the freely recombining X chromosomes, despite fairly large increased in X chromosome recombination. The results suggest that in populations of moderate size, sex does not accelerate short term response to selection.  相似文献   

8.
The construction of the first balancer chromosome, FiM1, for the medfly Ceratitis capitata is described. This chromosome has three overlapping pericentric inversions and is marked with dominant and recessive mutations. The inversion breakpoints of FiM1 suppress recombination throughout the length of the fifth chromosome, allowing lethal mutations to be recovered and maintained. This chromosome will provide a powerful tool for the manipulation of laboratory stocks, in particular, the recovery of new mutant and transgenic strains. We demonstrate the use of FiM1 for the recovery and maintenance of chromosomes carrying lethal mutations.  相似文献   

9.
Chromosomal rearrangements have been instrumental in genetic studies in Drosophila. Visibly marked deficiencies (deletions) are used in mapping studies and region-specific mutagenesis screens by providing segmental haploidy required to uncover recessive mutations. Marked recessive lethal inversions are used as balancer chromosomes to maintain recessive lethal mutations and to maintain the integrity of mutagenized chromosomes. In mice, studies on series of radiation-induced deletions that surround several visible mutations have yielded invaluable functional genomic information in the regions analyzed. However, most regions of the mouse genome are not accessible to such analyses due to a lack of marked chromosomal rearrangements. Here we describe a method to generate defined chromosomal rearrangements using the Cre--loxP recombination system based on a published strategy [R. Ramirez-Solis, P. Liu, and A. Bradley, (1995) Nature 378, 720--724]. Various types of rearrangements, such as deletions, duplications, inversions, and translocations, can be engineered using this strategy. Furthermore, the rearrangements can be visibly marked with coat color genes, providing essential reagents for large-scale recessive genetic screens in the mouse. The ability to generate marked chromosomal rearrangements will help to elevate the level of manipulative mouse genetics to that of Drosophila genetics.  相似文献   

10.
22 CHOBFY (BFY) cell lines were isolated at a frequency 2-30 x 10(-7) from mutagenized populations on the basis of their ability to grow in the presence of 1 microgram/ml brefeldin A (BFA). Four of the five mutant lines tested are genetically stable and none of the mutant lines characterized degrade this drug. Immunofluorescence studies reveal that whereas early endosomes and the Golgi complex have nearly identical BFA sensitivities in the parent CHO line, the relative sensitivities of these two organelles were dramatically altered in all six mutant lines tested. Four cell lines maintain normal Golgi appearance at a BFA concentration as high as 10 micrograms/ml. Mutant lines show wide variation in the level of resistance to growth inhibition by BFA, but none of the mutant lines characterized grow above 2 micrograms/ml BFA. This specific growth inhibition is observed under conditions where Golgi morphology and function remain unaffected, suggesting that some factor(s) unrelated to Golgi function remains sensitive to BFA in BFY mutant lines. These observations provide strong evidence for the presence of multiple, organelle-specific targets for BFA. Cell-free measurements with membrane extracts establish that resistance to BFA in BFY-1 cells involves a membrane-associated factor distinct from ARFs and coatomers. This collection of mutant lines may prove valuable for the identification of intracellular target(s) for BFA and/or of effectors that interact upstream or downstream with these targets, thereby uncovering the cascade which regulates assembly of organelle- specific coats.  相似文献   

11.
Discovery of induced point mutations in maize genes by TILLING   总被引:4,自引:0,他引:4  

Background

Going from a gene sequence to its function in the context of a whole organism requires a strategy for targeting mutations, referred to as reverse genetics. Reverse genetics is highly desirable in the modern genomics era; however, the most powerful methods are generally restricted to a few model organisms. Previously, we introduced a reverse-genetic strategy with the potential for general applicability to organisms that lack well-developed genetic tools. Our TILLING (Targeting Induced Local Lesions IN Genomes) method uses chemical mutagenesis followed by screening for single-base changes to discover induced mutations that alter protein function. TILLING was shown to be an effective reverse genetic strategy by the establishment of a high-throughput TILLING facility and the delivery of thousands of point mutations in hundreds of Arabidopsis genes to members of the plant biology community.

Results

We demonstrate that high-throughput TILLING is applicable to maize, an important crop plant with a large genome but with limited reverse-genetic resources currently available. We screened pools of DNA samples for mutations in 1-kb segments from 11 different genes, obtaining 17 independent induced mutations from a population of 750 pollen-mutagenized maize plants. One of the genes targeted was the DMT102 chromomethylase gene, for which we obtained an allelic series of three missense mutations that are predicted to be strongly deleterious.

Conclusions

Our findings indicate that TILLING is a broadly applicable and efficient reverse-genetic strategy. We are establishing a public TILLING service for maize modeled on the existing Arabidopsis TILLING Project.  相似文献   

12.
Steady-state transposon mutagenesis in inbred maize   总被引:8,自引:0,他引:8  
We implement a novel strategy for harnessing the power of high-copy transposons for functional analysis of the maize genome, and report behavioral features of the Mutator system in a uniform inbred background. The unique UniformMu population and database facilitate high-throughput molecular analysis of Mu-tagged mutants and gene knockouts. Key features of the population include: (i) high mutation frequencies (7% independent seed mutations) and moderation of copy number (approximately 57 total Mu elements; 1-2 MuDR copies per plant) were maintained by continuous back-crossing into a phenotypically uniform inbred background; (ii) a bz1-mum9 marker enabled selection of stable lines (loss of MuDR), inhibiting further transpositions in lines selected for molecular analysis; (iii) build-up of mutation load was prevented by screening Mu-active parents to exclude plants carrying pre-existing seed mutations. To create a database of genomic sequences flanking Mu insertions, selected mutant lines were analyzed by sequencing of MuTAIL PCR clone libraries. These sequences were annotated and clustered to facilitate bioinformatic subtraction of ancestral elements and identification of insertions unique to mutant lines. New insertions targeted low-copy, gene-rich sequences, and in silico mapping revealed a random distribution of insertions over the genome. Our results indicate that Mu populations differ markedly in the occurrence of Mu insertion hotspots and the frequency of suppressible mutations. We suggest that controlled MuDR copy number in UniformMu lines is a key determinant of these differences. The public database (http://uniformmu.org; http://endosperm.info) includes pedigree and phenotypic data for over 2000 independent seed mutants selected from a population of 31 548 F2 lines and integrated with analyses of 34 255 MuTAIL sequences.  相似文献   

13.
14.
To facilitate genetic screens to identify and maintain recessive mutations that map to the short arm of human chromosome 1, we have utilized chromosome engineering to generate two mouse strains that carry large inversions on the distal region of mouse chromosome 4. The inversion intervals are 16 and 22 cM in size together they cover approximately half of chromosome 4. Since recombination between the wild-type and inversion chromosomes does not occur within these inversion intervals, mutant alleles of genes mapping to this region can be identified and maintained. Therefore, these inversion chromosomes work as balancer chromosomes. These inversions have the additional advantage that they are tagged with genes encoding the visible coat color markers tyrosinase and agouti, and therefore the dosage of the inversion chromosome (+/+, Inv/+, Inv/Inv) can be visually recognized. These inversion strains will be extremely useful for mutagenesis screens that focus on functional annotation of human chromosome 1p.  相似文献   

15.
There is an interesting overlap of function in a wide range of organisms between genes that modulate the stress responses and those that regulate aging phenotypes and, in some cases, lifespan. We have therefore screened mutagenized zebrafish embryos for the altered expression of a stress biomarker, senescence-associated beta-galactosidase (SA-beta-gal) in our current study. We validated the use of embryonic SA-beta-gal production as a screening tool by analyzing a collection of retrovirus-insertional mutants. From a pool of 306 such mutants, we identified 11 candidates that showed higher embryonic SA-beta-gal activity, two of which were selected for further study. One of these mutants is null for a homologue of Drosophila spinster, a gene known to regulate lifespan in flies, whereas the other harbors a mutation in a homologue of the human telomeric repeat binding factor 2 (terf2) gene, which plays roles in telomere protection and telomere-length regulation. Although the homozygous spinster and terf2 mutants are embryonic lethal, heterozygous adult fish are viable and show an accelerated appearance of aging symptoms including lipofuscin accumulation, which is another biomarker, and shorter lifespan. We next used the same SA-beta-gal assay to screen chemically mutagenized zebrafish, each of which was heterozygous for lesions in multiple genes, under the sensitizing conditions of oxidative stress. We obtained eight additional mutants from this screen that, when bred to homozygosity, showed enhanced SA-beta-gal activity even in the absence of stress, and further displayed embryonic neural and muscular degenerative phenotypes. Adult fish that are heterozygous for these mutations also showed the premature expression of aging biomarkers and the accelerated onset of aging phenotypes. Our current strategy of mutant screening for a senescence-associated biomarker in zebrafish embryos may thus prove to be a useful new tool for the genetic dissection of vertebrate stress response and senescence mechanisms.  相似文献   

16.
The rates of movement of 11 families of transposable elements of Drosophila melanogaster were studied by means of in situ hybridization of probes to polytene chromosomes of larvae from a long-term mutation accumulation experiment. Replicate mutation-accumulation lines carrying second chromosomes derived from a single common ancestral chromosome were maintained by backcrosses of single males heterozygous for a balancer chromosome and a wild-type chromosome, and were scored after 116 generations. Twenty-seven transpositions and 1 excision were detected using homozygous viable and fertile second chromosomes, for a total of 235,056 potential sources of transposition events and a potential 252,880 excision events. The overall transposition rate per element per generation was 1.15 x 10(-4) and the excision rate was 3.95 x 10(-6). The single excision (of a roo element) was due to recombination between the element's long terminal repeats. A survey of the five most active elements among nine homozygous lethal lines revealed no significant difference in the estimates of transposition and excision rates from those from viable lines. The excess of transposition over excision events is in agreement with the results of other in situ hybridization experiments, and supports the conclusion that replicative increase in transposable element copy number is opposed by selection. These conclusions are compared with those from other studies, and with the conclusions from population surveys of element frequencies.  相似文献   

17.
Phenotype-driven mutagenesis screens are used to discover gene function in model organisms. Mutations that are induced by chemical mutagens can occur anywhere in the genome. However, the use of a balancer chromosome (where a phenotypically marked segment of a chromosome is inverted) in a mutagenesis screen enables mutations to be mapped in a defined region of the genome and maintained stably in a heterozygous state. Mouse balancer chromosomes can be engineered using Cre-loxP technology in selected regions of the genome. Balancer mutagenesis screens will provide a systematic functional analysis of the genes on mouse chromosomes, and consequently, will facilitate a functional annotation of the mammalian genome sequence.  相似文献   

18.
An extensive ethylmethanesulfonate mutagenesis of Drosophila melanogaster was undertaken to isolate the stronger alleles of 3 indirect flight-muscle mutations. We isolated 17 strong mutant lines, with nearly complete penetrance and expressivity, using direct screening under polarized light, from more than 1700 mutagenized chromosomes. On complementation, we found 11 of these 17 mutant lines to be alleles of 3 indirect flight-muscle mutations (Ifm(2)RU1, 3 noncomplementing lines; ifm(2)RU2, 6 alleles; ifm(2)RU3, 2 alleles) of the previously isolated 8 complementation groups (Ifm(2)RU1to ifm(2)RU8). In addition, we found 6 new complementation groups with strong defects in adult-muscle morphology; we named these ifm(2)RS1 to ifm(2)RS6. All mutant lines were mapped by meiotic recombination, and 5 of the 6 new complementation lines were mapped using chromosome deficiencies. ifm(2)RS1 maps to a region that harbors ifm(2)RU4 (a mutation that was isolated previously); however, theses are not alleles because each complements the other mutation, and the mutant-muscle phenotype is very different. We used direct screening under polarized light to find recessive mutations; although this method was labor intensive, it can be used to identify recessive genes involved in myogenesis, unlike screens for flightlessness or wing-position defects. This screen identifies regions on the second chromosome that harbor probable genes that are likely expressed in the mesoderm and are thought to be involved in myogenesis. This screen has generated valuable resources that will help us to understand the role of many molecular players involved in myogenesis.  相似文献   

19.
Mutagenesis is an important tool in crop improvement. However, the hexaploid genome of wheat (Triticum aestivum L.) presents problems in identifying desirable genetic changes based on phenotypic screening due to gene redundancy. TILLING (Targeting Induced Local Lesions IN Genomes), a powerful reverse genetic strategy that allows the detection of induced point mutations in individuals of the mutagenized populations, can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for crop breeding. Wheat is especially well-suited for TILLING due to the high mutation densities tolerated by polyploids. However, only a few wheat TILLING populations are currently available in the world, which is far from satisfying the requirement of researchers and breeders in different growing environments. In addition, current TILLING screening protocols require costly fluorescence detection systems, limiting their use, especially in developing countries. We developed a new TILLING resource comprising 2610 M(2) mutants in a common wheat cultivar 'Jinmai 47'. Numerous phenotypes with altered morphological and agronomic traits were observed from the M(2) and M(3) lines in the field. To simplify the procedure and decrease costs, we use unlabeled primers and either non-denaturing polyacrylamide gels or agarose gels for mutation detection. The value of this new resource was tested using PCR with RAPD and Intron-spliced junction (ISJ) primers, and also TILLING in three selected candidate genes, in 300 and 512 mutant lines, revealing high mutation densities of 1/34 kb by RAPD/ISJ analysis and 1/47 kb by TILLING. In total, 31 novel alleles were identified in the 3 targeted genes and confirmed by sequencing. The results indicate that this mutant population represents a useful resource for the wheat research community. We hope that the use of this reverse genetics resource will provide novel allelic diversity for wheat improvement and functional genomics.  相似文献   

20.
X chromosomes mutagenized with EMS were tested for their effects on the fitness of hemizygous carriers. The tests were carried out in populations in which treated and untreated X chromosomes segregated from matings between males and attached-X females; the populations were maintained for several generations, during which time changes in the frequencies of the treated and untreated chromosomes were observed. From the rates at which the frequencies changed, the fitness effects of the treated chromosomes were determined. It was found that flies hemizygous for a mutagenized chromosome were 1.7% less fit per mM EMS treatment than those hemizygous for an untreated chromosome. Since the same flies were only 0.5% per mM less viable than their untreated counterparts, the total fitness effect of an X chromosome carrying EMS-induced mutants is three to four times greater than its viability effect. By comparing the heterozygous effect of a mutagenized X chromosome on fitness with the corresponding hemizygous effect, the dominance value for the chromosome is estimated to be about 0.25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号