首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Embryonic Stem Cells: Spontaneous and Directed Differentiation   总被引:3,自引:0,他引:3  
The specific structural features of embryonic stem cells and embryoid bodies and mechanisms of their differentiation in different cell types are considered. The mouse embryonic stem cells (line R1) formed multilayer colonies which enlarged as a result of fast cell division. Embryoid bodies that derived from embryonic stem cells consisted of an outer layer, an inner layer, and an internal cavity. The structure of cells of the outer and inner layers markedly differed. Spontaneous and directed differentiation of embryoid bodies is determined by some unspecific and specific factors (growth and differentiation factors and extracellular matrix proteins). Retinoic acid, the most commonly used inducer of differentiation of the embryonic stem cells, induces different types of differentiation when applied at different concentrations. The sequence of expression of tissue specific genes and proteins during differentiation of the embryonic stem cells in vitrois similar to that in vivo.  相似文献   

2.
Induced pluripotent stem (iPS) cell technology demonstrates that somatic cells can be reprogrammed to a pluripotent state by over-expressing four reprogramming factors. This technology has created an interest in deriving iPS cells from domesticated animals such as pigs, sheep and cattle. Moloney murine leukemia retrovirus vectors have been widely used to generate and study mouse iPS cells. However, this retrovirus system infects only mouse and rat cells, which limits its use in establishing iPS cells from other mammals. In our study, we demonstrate a novel retrovirus strategy to efficiently generate porcine iPS cells from embryonic fibroblasts. We transfected four human reprogramming factors (Oct4, Sox2, Klf4 and Myc) into fibroblasts in one step by using a VSV-G envelope-coated pantropic retrovirus that was easily packaged by GP2-293 cells. We established six embryonic stem (ES)-like cell lines in human ES cell medium supplemented with bFGF. Colonies showed a similar morphology to human ES cells with a high nuclei-cytoplasm ratio and phase-bright flat colonies. Porcine iPS cells could form embryoid bodies in vitro and differentiate into the three germ layers in vivo by forming teratomas in immunodeficient mice.  相似文献   

3.
Spain ranks number one in organ donors (35 per million per yr). Although the prevalence of diabetes is low (100,000 type 1 diabetic patients and 2 million type 2 diabetic patients), the expected number of patients receiving islet transplants should be estimated at 200 per year. Islet replacement represents a promising cure for diabetes and has been successfully applied in a limited number of type 1 diabetic patients, resulting in insulin independence for periods longer than 3 yr. However, it has been difficult to obtain sufficient numbers of islets from cadaveric donors. Interesting alternatives include acquiring renewable sources of cells using either embryonic or adult stem cells to overcome the islet scarcity problem. Stem cells are capable of extensive proliferation rates and are capable of differentiating into other cell types of the body. In particular, totipotent stem cells are capable of differentiating into all cell types in the body, whereas pluripotent stem cells are limited to the development of a certain number of differentiated cell types. Insulin-producing cells have been obtained from both embryonic and adult stem cells using several approaches. In animal models of diabetes, the therapeutic application of bioengineered insulin-secreting cells derived from stem cells has delivered promising results. This review will summarize the different approaches that have been used to obtain insulin-producing cells from embryonic and adult stem cells and highlights the key points that will allow in vitro differentiation and subsequent transplantation in the future.  相似文献   

4.
5.
6.
7.
The transplantation of islets isolated from donor pancreas has renewed the interest in cell therapy for the treatment of diabetes. In addition, the capacity that stem cells have to differentiate into a wide variety of cell types makes their use ideal to generate beta-cells for transplantation therapies. Several studies have reported the generation of insulin-secreting cells from embryonic and adult stem cells that normalized blood glucose values when transplanted into diabetic animal models. Finally, although much work remains to be done, there is sufficient evidence to warrant continued efforts on stem cell research to cure diabetes.  相似文献   

8.
Microarray and RT-PCR based methods are important tools for analysis of gene expression; however, in tissues containing many different cells types, such as the testis, characterization of gene expression in specific cell types can be severely hampered by noise from other cells. The laser microdissection technology allows for enrichment of specific cell types. However, when the cells are not morphologically distinguishable, it is necessary to use a specific staining method for the target cells. In this study we have tested different fixatives, storage conditions for frozen sections and staining protocols, and present two staining protocols for frozen sections, one for fast and specific staining of fetal germ cells, testicular carcinoma in situ cells, and other cells with embryonic stem cell-like properties that express the alkaline phosphatase, and one for specific staining of lipid droplet-containing cells, which is useful for isolation of the androgen-producing Leydig cells. Both protocols retain a morphology that is compatible with laser microdissection and yield RNA of a quality suitable for PCR and microarray analysis.  相似文献   

9.
Human embryonic stem cell (hESC) lines are derived from the inner cell mass (ICM) of preimplantation human blastocysts obtained on days 5–6 following fertilization. Based on their derivation, they were once thought to be the equivalent of the ICM. Recently, however, studies in mice reported the derivation of mouse embryonic stem cell lines from the epiblast; these epiblast lines bear significant resemblance to human embryonic stem cell lines in terms of culture, differentiation potential and gene expression. In this study, we compared gene expression in human ICM cells isolated from the blastocyst and embryonic stem cells. We demonstrate that expression profiles of ICM clusters from single embryos and hESC populations were highly reproducible. Moreover, comparison of global gene expression between individual ICM clusters and human embryonic stem cells indicated that these two cell types are significantly different in regards to gene expression, with fewer than one half of all genes expressed in both cell types. Genes of the isolated human inner cell mass that are upregulated and downregulated are involved in numerous cellular pathways and processes; a subset of these genes may impart unique characteristics to hESCs such as proliferative and self-renewal properties.  相似文献   

10.
One of the main criteria of pluripotency is ability of cell lines to differentiate into the germ line. Pluripotent stem cell lines in ground state of pluripotency differ from the lines in primed state by their ability to give rise to the mature gametes. To understand molecular mechanisms involved in regulation of different states of pluripotency we investigated the expression patterns of germ line specific genes in different type pluripotent stem cells and mouse and human embryonic teratocarcinoma cells. We found that pluripotent stem cells in vitro, in blastocyst and gonocytes at stage E13.5 had similar expression patterns in contrast to the epiblast cells at stage E6.5. Quantitative real time PCR analysis showed that Vasa/Ddx4 expression in mouse and human embryonic stem cells was significantly lower than in blastocyst and gonocytes. Moreover, Vasa/Ddx4 and E-ras expression was significantly higher in mouse embryonic stem cells than in human embryonic stem cells. Our analysis of germ line specific gene expression in differentiating mouse embryonic stem and embryonic germ cells as well as in mouse embryonic teratocarcinoma cells maintained under conditions promoting cell reprogramming from primed to ground state of pluripotency (2i + LIF) revealed that only pluripotent stem cells are able to regulate the expression level of Oct4 and Vasa/Ddx4 and restore initial ground state, while in embryonic teratocarcinoma cells the expression level of these genes remained unchanged. We suggest that expression patterns of germ lines specific genes, in particular of Vasa/Ddx4, can underlie the regulation of ground and primed states of pluripotency.  相似文献   

11.
12.
To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1–5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.  相似文献   

13.
14.
15.
16.
The ability of human embryonic stem cells (hESCs)to undergo indefinite self-renewal in vitro and to produce lineages derived from all three embryonic germ layers both in vitro and in vivo makes such cells extremely valuable in both clinical and research settings.However,the generation of specialized cell lineages from a mixture of differentiated hESCs remains technically difficult.Tissue specific promoter-driven reporter genes are powerful tools for tracking cell types of interest in differentiated cell populations.Here,we describc the construction of modular lentivectors containing different tissue-specific promoters(Tαl of α-tubulin:αP2 of adipocyte Protein 2;and AFP of alpha fetoprotein)driving expression of humanized Renilla green fluorescent protein(hrGFP).To this end,we used MultiSite gateway technology and employed the novel vectors to successfully monitor hESC differentiation.We present a versatile method permitting target cells to bc traced.Our system will facilitate research in developmental biology,transplantation,and in vivo stem cell tracking.  相似文献   

17.
Gu B  Zhang J  Wu Y  Zhang X  Tan Z  Lin Y  Huang X  Chen L  Yao K  Zhang M 《PloS one》2011,6(5):e19386

Background

It has long been proposed that early embryos and reproductive organs exhibit similar gene expression profiles. However, whether this similarity is propagated to the protein level remains largely unknown. We have previously characterised the promiscuous expression pattern of cell surface proteins on mouse embryonic stem (mES) cells. As cell surface proteins also play critical functions in human embryonic stem (hES) cells and germ cells, it is important to reveal whether a promiscuous pattern of cell surface proteins also exists for these cells.

Methods and Principal Findings

Surface proteins of hES cells and human mature sperms (hSperms) were purified by biotin labelling and subjected to proteomic analyses. More than 1000 transmembrane or secreted cell surface proteins were identified on the two cell types, respectively. Proteins from both cell types covered a large variety of functional categories including signal transduction, adhesion and transporting. Moreover, both cell types promiscuously expressed a wide variety of tissue specific surface proteins, and some surface proteins were heterogeneously expressed.

Conclusions/Significance

Our findings indicate that the promiscuous expression of functional and tissue specific cell surface proteins may be a common pattern in embryonic stem cells and germ cells. The conservation of gene expression patterns between early embryonic cells and reproductive cells is propagated to the protein level. These results have deep implications for the cell surface signature characterisation of pluripotent stem cells and germ cells and may lead the way to a new area of study, i.e., the functional significance of promiscuous gene expression in pluripotent and germ cells.  相似文献   

18.
19.
Aggressive cancer cells and pluripotent stem cells converge in their capacity for self-renewal, proliferation and plasticity. Recent studies have capitalized on these similarities by demonstrating that tumors arise from specific cancer stem cell populations that, in a manner reminiscent of normal stem cells, are able to both self-renew and give rise to a heterogeneous tumor population. This stem cell like function of aggressive cancer cells is likely attributable to the ectopic expression of embryonic factors such as Nodal and Cancer Testis Specific Antigens (CTAs), which maintain a functional plasticity by promoting pluripotency and immortality. During development, the expression of these embryonic factors is tightly regulated by a dynamic array of mediators, including the spatial and temporal expression of inhibitors such as Lefty, and the epigenetic modulation of the genome. In aggressive cancer cells, particularly melanoma, this balance of regulatory mediators is disrupted, leading to the aberrant expression of pluripotency-associated genes. By exposing aggressive cancer cells to embryonic microenvironments, this balance of regulatory mediators is restored, thereby reprogramming tumor cells to a more benign phenotype. These stem cell-derived mediators, as well as the genes they regulate, provide therapeutic targets designed to specifically differentiate and eradicate aggressive cancers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号