首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Archaeal zinc-containing ferredoxin from Sulfolobus sp. strain 7 contains one [3Fe-4S] cluster (cluster I), one [4Fe-4S] cluster (cluster II), and one isolated zinc center. Oxidative degradation of this ferredoxin led to the formation of a stable intermediate with 1 zinc and approximately 6 iron atoms. The metal centers of this intermediate were analyzed by electron paramagnetic resonance (EPR), low temperature resonance Raman, x-ray absorption, and (1)H NMR spectroscopies. The spectroscopic data suggest that (i) cluster II was selectively converted to a cubane [3Fe-4S](1+) cluster in the intermediate, without forming a stable radical species, and that (ii) the local metric environments of cluster I and the isolated zinc site did not change significantly in the intermediate. It is concluded that the initial step of oxidative degradation of the archaeal zinc-containing ferredoxin is selective conversion of cluster II, generating a novel intermediate containing two [3Fe-4S] clusters and an isolated zinc center. At this stage, significant structural rearrangement of the protein does not occur. We propose a new scheme for oxidative degradation of dicluster ferredoxins in which each cluster converts in a stepwise manner, prior to apoprotein formation, and discuss its structural and evolutionary implications.  相似文献   

2.
Zinc centers play a key role as important structure determinants in a variety of proteins including ferredoxins (Fd). Here, we exploit the availability of two highly similar ferredoxin isoforms from the thermophile Sulfolobus metallicus, which differ in the residues involved in coordinating a His/Asp zinc site that ties together the protein core with its N-terminal extension, to investigate the effect of the absence of this site on ferredoxin folding. The conformational properties of the zinc-containing (FdA) and zinc-lacking (FdB) isoforms were investigated using visible absorption and tryptophan fluorescence emission. Fluorescence quenching studies, together with comparative modeling and molecular dynamics simulations, indicate that the FdB N-terminal extension assumes a fold identical to that of the Zn(2+)-containing isoform. The thermal stability of the isoforms was investigated in a broad pH range (2 < pH < 10), and at physiological pH conditions, both proteins unfold above 100 degrees C. Surprisingly, the Zn(2+)-lacking isoform was always found to be more stable than its Zn(2+)-containing counterpart: a DeltaT(m) approximately 9 degrees C is determined at pH 7, a difference that becomes even more significant at extreme pH values, reaching a DeltaT(m) approximately 24 degrees C at pH 2 and 10. The contribution of the Zn(2+) site to ferredoxin stability was further resolved using selective metal chelators. During thermal unfolding, the zinc scavenger TPEN significantly lowers the T(m) in FdA ( approximately 10 degrees C), whereas it has no effect in FdB. This shows that the Zn(2+) site contributes to ferredoxin stability but that FdB has devised a structural strategy that accounts for an enhanced stability without using a metal cross-linker. An analysis of the FdB sequence and structural model leads us to propose that the higher stability of the zinc-containing ferredoxin results from van der Waals contacts formed between the residues that occupy the same spatial region where the zinc ligands are found in FdA. These favor the formation of a novel local stabilizing hydrophobic core and illustrate a strategy of natural fold design.  相似文献   

3.
A novel pink [2Fe-2S] protein has been purified from the cytosol fraction of the thermoacidophilic archaeon Sulfolobus sp. strain 7 (originally named Sulfolobus acidocaldarius 7) and called "sulredoxin." Its absorption, circular dichroism, and electron paramagnetic resonance spectra suggest the presence of a Rieske-type [2Fe-2S] cluster (g-factors of 2.01, 1.91, and 1.79; average g-factor [gav] = 1.90) which is remarkably similar to that of Thermus thermophilus respiratory Rieske FeS protein (J. A. Fee, K. L. Findling, T. Yoshida, R. Hille, G. E. Tarr, D. O. Hearshen, W. R. Dunham, E. P. Day, T. A. Kent, and E. Münck, J. Biol. Chem. 259:124-133, 1984) and distinctively different from those of the plant-type ferredoxins (gav = 1.96). Sulredoxin, which is the first Rieske-type [2Fe-2S] protein isolated from an archaeal species, does not function as an electron acceptor of the cognate 2-oxoacid:ferredoxin oxidoreductase. Whether sulredoxin is derived from the archaeal membrane-bound respiratory Rieske-type FeS center (gy = 1.91) is the subject of further investigation.  相似文献   

4.
Thermoplasma acidophilum and Sulfolobus acidocaldarius contain coenzyme A-acylating 2-oxoacid:ferredoxin oxidoreductases similar to those found in halophilic archaebacteria. A common feature of these enzymes is the formation of a free radical intermediate in the course of the catalytic cycle. The electron-accepting ferredoxins and a similar protein from Desulfurococcus mobilis have been purified and characterized. In contrast to the [2Fe-2S] ferredoxin of Halobacterium halobium, the ferredoxins of thermoacidophilic archaebacteria most likely contain two [4Fe-4S]2 + (2 + .1 +) clusters per molecule. Properties of these proteins are compared with respect to the evolution of archaebacteria.  相似文献   

5.
 Seven-iron ferredoxins from the thermoacidophilic archaea Acidianus ambivalens, A. infernus, Metalosphaera prunae and Sulfolobus metallicus were extensively characterised, allowing study of their expression under aerobic and anaerobic growth conditions as well as the putative role in thermal stability of a recently described zinc centre. The archaeon S. metallicus was found to express, under the same growth conditions, two ferredoxins in almost identical amounts, a novelty among Archaea. Most interestingly, these two ferredoxins differ at the N-terminal amino acid sequence in that one has a zinc binding motif (FdA) and the other does not (FdB); in agreement with these findings, FdA contains a zinc ion and FdB does not. These two ferredoxins have identical thermal stabilities, indicating that the zinc atom is not determinant in the protein thermostability. Further, the presence of the additional zinc centre does not interfere with the redox properties of the iron-sulfur clusters since their reduction potentials are almost identical. From the other three archaea, independently of the growth mode in respect to oxygen, only a single zinc-containing ferredoxin was found. EPR studies on the purified proteins, both in the oxidised and dithionite reduced states, allowed the identification of one [3Fe-4S]1+/0 centre and one [4Fe-4S]2+/1+ centre in all proteins studied. The complete sequence of A. ambivalens ferredoxin is reported. Together with the data gathered in this study, the properties of the seven-iron ferredoxins from Sulfolobales so far known are re-discussed. Received: 10 June 1998 / Accepted: 25 June 1998  相似文献   

6.
7.
The SdhC subunit of the archaeal respiratory complex II (succinate:quinone oxidoreductase) from Sulfolobus tokodaii strain 7 has a novel cysteine rich motif and is also related to archaeal and bacterial heterodisulfide reductase subunits. We overexpressed the sdhC gene heterologously in Escherichia coli and characterized the gene product in greater detail. Low temperature resonance Raman and x-ray absorption spectroscopic investigation collectively demonstrate the presence of a [2Fe-2S] cluster core with complete cysteinyl ligation (Center C) and an isolated zinc site in the recombinant SdhC. The [2Fe-2S]2+ cluster core is sensitive to dithionite, resulting in irreversible breakdown of the Fe-Fe interaction. EPR analysis confirmed that the novel Center C is an inherent redox center in the archaeal complex II, showing unique EPR signals in the succinate-reduced state. Distinct subunit and cofactor arrangements in the S. tokodaii respiratory complex II, as compared with those in mitochondrial and some mesophilic bacterial enzymes, indicate modular evolution of this ubiquitous electron entry site in the respiratory chains of aerobic organisms.  相似文献   

8.
We heterologously overproduced a hyperthermostable archaeal low potential (E(m) = -62 mV) Rieske-type ferredoxin (ARF) from Sulfolobus solfataricus strain P-1 and its variants in Escherichia coli to examine the influence of ligand substitutions on the properties of the [2Fe-2S] cluster. While two cysteine ligand residues (Cys(42) and Cys(61)) are essential for the cluster assembly and/or stability, the contributions of the two histidine ligands to the cluster assembly in the archaeal Rieske-type ferredoxin appear to be inequivalent as indicated by much higher stability of the His(64) --> Cys variant (H64C) than the His(44) --> Cys variant (H44C). The x-ray absorption and resonance Raman spectra of the H64C variant firmly established the formation of a novel, oxidized [2Fe-2S] cluster with one histidine and three cysteine ligands in the archaeal Rieske-type protein moiety. Comparative resonance Raman features of the wild-type, natural abundance and uniformly (15)N-labeled ARF and its H64C variant showed significant mixing of the Fe-S and Fe-N stretching characters for an oxidized biological [2Fe-2S] cluster with partial histidine ligation.  相似文献   

9.
An extremely thermostable [4Fe-4S] ferredoxin was isolated under anaerobic conditions from a hyperthermophilic archaeon Thermococcus profundus, and the ferredoxin gene was cloned and sequenced. The nucleotide sequence of the ferredoxin gene shows the ferredoxin to comprise 62 amino acid residues with a sequence similar to those of many bacterial and archaeal 4Fe (3Fe) ferredoxins. The unusual Fe-S cluster type, which was identified in the resonance Raman and EPR spectra, has three cysteines and one aspartate as the cluster ligands, as in the Pyrococcus furiosus 4Fe ferredoxin. Under aerobic conditions, a ferredoxin was purified that contains a [3Fe-4S] cluster as the major Fe-S cluster and a small amount of the [4Fe-4S] cluster. Its N-terminal amino acid sequence is the same as that of the anaerobically-purified ferredoxin up to the 26th residue. These results indicate that the 4Fe ferredoxin was degraded to 3Fe ferredoxin during aerobic purification. The aerobically-purified ferredoxin was reversibly converted back to the [4Fe-4S] ferredoxin by the addition of ferrous ions under reducing conditions. The anaerobically-purified [4Fe-4S] ferredoxin is quite stable; little degradtion was observed over 20 h at 100 degrees C, while the half-life of the aerobically-purified ferredoxin is 10 h at 100 degrees C. Both the anaerobically- and aerobically-purified ferredoxins were found to function as electron acceptors for the pyruvate-ferredoxin oxidoreductase purified from the same archaeon.  相似文献   

10.
The archaeal leuB gene encoding isopropylmalate dehydrogenase of Sulfolobus sp. strain 7 was cloned, sequenced, and expressed in Escherichia coli. The recombinant Sulfolobus sp. enzyme was extremely stable to heat. The substrate and coenzyme specificities of the archaeal enzyme resembled those of the bacterial counterparts. Sedimentation equilibrium analysis supported an earlier proposal that the archaeal enzyme is homotetrameric, although the corresponding enzymes studied so far have been reported to be dimeric. Phylogenetic analyses suggested that the archaeal enzyme is homologous to mitochondrial NAD-dependent isocitrate dehydrogenases (which are tetrameric or octameric) as well as to isopropylmalate dehydrogenases from other sources. These results suggested that the present enzyme is the most primitive among isopropylmalate dehydrogenases belonging in the decarboxylating dehydrogenase family.  相似文献   

11.
Escherichia coli contains a soluble, [2Fe-2S] ferredoxin of unknown function (Knoell, H.-E., and Knappe, J. (1974) Eur. J. Biochem. 50, 245-252). Using antiserum to the purified protein to screen E. coli genomic expression libraries, we have cloned a gene (designated fdx) encoding this protein. The DNA sequence of the gene predicts a polypeptide of 110 residues after removal of the initiator methionine (polypeptide M(r) = 12,186, holoprotein M(r) = 12,358). The deduced amino acid sequence is strikingly similar to those of the ferredoxins found in animal mitochondria which function with cytochrome P450 enzymes and to the ferredoxin from Pseudomonas putida which functions with P450cam. The overall sequence identity is approximately 36% when compared with human mitochondrial and P. putida ferredoxins, and the identities include 4 cysteine residues proposed to coordinate the iron cluster. The protein was overproduced approximately 500-fold using an expression plasmid, and the holoprotein was assembled and accumulated in amounts exceeding 30% of the total cell protein. The overexpressed ferredoxin exhibits absorption, circular dichroism, and electron paramagnetic resonance spectra closely resembling those of the animal ferredoxins and P. putida ferredoxin.  相似文献   

12.
S P Wang  P J Kang  Y P Chen    B Ely 《Journal of bacteriology》1995,177(10):2901-2907
The fdxA gene was identified upstream of and in the opposite direction from the Caulobacter crescentus cysC gene. Analyses of the nucleotide sequence and the deduced amino acid sequence of the fdxA gene demonstrated that it encodes a ferredoxin with a molecular mass of 12,080 Da. This ferredoxin has common structural features with ferredoxins that contain a [3Fe-4S] and a [4Fe-4S] cluster, including seven conserved cysteines responsible for the binding of the two clusters. A mutation in the fdxA gene was obtained, and the resulting strain did not produce one of the two ferredoxins (FdI) found in C. crescentus. Further experiments demonstrated that the fdxA gene is temporally expressed in C. crescentus and that FdI is required for completion of the cell cycle at 37 degrees C.  相似文献   

13.
14.
15.
The sequence and expression of mRNA homologous to a cDNA encoding a non-photosynthetic ferredoxin (Fd1) from Citrus fruit was investigated. The non-photosynthetic nature of this ferredoxin was deduced from: (1) amino acid sequence alignments showing better scores with non-photosynthetic than with photosynthetic ferredoxins, (2) higher expression in tissues containing plastids other than chloroplast such as petals, young fruits, roots and peel of fully coloured fruits, and (3) the absence of light-dark regulation characteristic of photosynthetic ferredoxins. In a phylogenetic tree constructed with higher-plant ferredoxins, Citrus fruit ferredoxin clustered together with root ferredoxins and separated from the photosynthetic ferredoxins. Non photosynthetic (root and fruit) ferredoxins, but not the photosynthetic ferredoxins, have their closest homologs in cyanobacteria. Analysis of ferredoxin genomic organization suggested that non-photosynthetic ferredoxins exist in Citrus as a small gene family. Expression of Fd1 is developmentally regulated during flower opening and fruit maturation, both processes may be mediated by ethylene in Citrus. Exogenous ethylene application also induced the expression of Fd1 both in flavedo and leaves. The induction of non-photosynthetic ferredoxins could be related with the demand for reducing power in non-green, but biosynthetically active, tissues.  相似文献   

16.
The coenzyme A-acylating 2-oxoacid:ferredoxin oxidoreductase and ferredoxin (an effective electron acceptor) were purified from the hyperthermophilic archaeon, Sulfolobus solfataricus P1 (DSM1616). The purified ferredoxin is a monomeric protein with an apparent molecular mass of approximately 11 kDa by SDS-PAGE and of 11,180+/-50 Da by MALDI-TOF mass spectrometry. Ferredoxin was identified to be a dicluster, [3Fe-4S][4Fe-4S], type ferredoxin by spectrophotometric and EPR studies, and appeared to be zinc-containing based on the shared homology of its N-terminal sequence with those of known zinc-containing ferredoxins. On the other hand, the purified 2-oxoacid: ferredoxin oxidoreductase was found to be a heterodimeric enzyme consisting of 69 kDa alpha and 34 kDa beta subunits by SDS-PAGE and MALDI-TOF mass spectrometry. The purified enzyme showed a specific activity of 52.6 units/mg for the reduction of cytochrome c with 2-oxoglutarate as substrate at 55 degrees C, pH 7.0. Maximum activity was observed at 70 degrees C and the optimum pH for enzymatic activity was 7.0 -8.0. The enzyme displays broad substrate specificity toward 2-oxoacids, such as pyruvate, 2-oxobutyrate, and 2-oxoglutarate. Among the 2-oxoacids tested (pyruvate, 2-oxobutyrate, and 2-oxoglutarate), 2-oxoglutarate was found to be the best substrate with Km and kcat values of 163 microM and 452 min(-1), respectively. These results provide useful information for structural studies on these two proteins and for studies on the mechanism of electron transfer between the two.  相似文献   

17.
Summary Recent evidence indicates that a gene transposition event occurred during the evolution of the bacterial ferredoxins subsequent to the ancestral intrasequence gene duplication. In light of this new information, the relationships among the bacterial ferredoxins were reexamined and an evolutionary tree consistent with this new understanding was derived. The bacterial ferredoxins can be divided into several groups based on their sequence properties; these include the clostridial-type ferredoxins, theAzotobacter-type ferredoxins, and a group containing the ferredoxins from the anaerobic, green, and purple sulfur bacteria. Based on sequence comparison, it was concluded that the amino-terminal domain of theAzotobacter-type ferredoxins, which contains the novel 3Fe3S cluster binding site, is homologous with the carboxyl-terminal domain of the ferredoxins from the anaerobic photosynthetic bacteria.A number of ferredoxin sequences do not fit into any of the groups described above. Based on sequence properties, these sequences can be separated into three groups: a group containingMethanosarcina barkeri ferredoxin andDesulfovibrio desulfuricans ferredoxin II, a group containingDesulfovibrio gigas ferredoxin andClostridium thermoaceticum ferredoxin, and a group containingDesulfovibrio africanus ferredoxin I andBacillus stearothermophilus ferredoxin. The last two groups differ from all of the other bacterial ferredoxins in that they bind only one FeS cluster per polypeptide, whereas the others bind two. Sequence examination indicates that the second binding site has been either partially or completely lost from these ferredoxins.Methanosarcina barkeri ferredoxin andDesulfovibrio desulfuricans ferredoxin II are of interest because, of all the ferredoxins whose sequences are presently known, they show the strongest evidence of internal gene duplication. However, the derived evolutionary tree indicates that they diverged from theAzotobacter-type ferredoxins well after the ancestral internal gene duplication. This apparent discrepancy is explained by postulating a duplication of one halfchain sequence and a deletion of the other halfchain. TheClostridium thermoaceticum andBacillus stearothermophilus groups diverged from this line and subsequently lost one of the FeS binding sites.It has recently become apparent that gene duplication is ubiquitous among the ferredoxins. Several organisms are now known to have a variety of ferredoxins with widely divergent properties. Unfortunately, in only one case are the sequences of more than one ferredoxin from the same organism known. Thus, although the major features of the bacterial ferredoxin tree are now understood, a complete bacterial phylogeny cannot be inferred until more sequence information is available.  相似文献   

18.
A gene coding for the ferredoxin of the primordial, strictly anaerobic and hyperthermophilic bacterium Thermotoga maritima was cloned, sequenced and expressed in Escherichia coli. The ferredoxin gene encodes a polypeptide of 60 amino acids that incorporates a single 4Fe-4S cluster. T. maritima ferredoxin expressed in E. coli is a heat-stable, monomeric protein, the spectroscopic properties of which show that its 4Fe-4S cluster is correctly assembled within the mesophilic host, and that it remains stable during purification under aerobic conditions. Removal of the iron-sulfur cluster results in an apo-ferredoxin that has no detectable secondary structure. This observation indicates that in vivo formation of the ferredoxin structure is coupled to the insertion of the iron-sulfur cluster into the polypeptide chain. Sequence comparison of T. maritima ferredoxin with other 4Fe-4S ferredoxins revealed high sequence identities (75% and 50% respectively) to the ferredoxins from the hyperthermophilic members of the Archaea, Thermococcus litoralis and Pyrococcus furiosus. The high sequence similarity supports a close relationship between these extreme thermophilic organisms from different phylogenetic domains and suggests that ferredoxins with a single 4Fe-4S cluster are the primordial representatives of the whole protein family. This observation suggests a new model for the evolution of ferredoxins.  相似文献   

19.
Ferredoxin from the thermoacidophilic archaeon Sulfolobus sp. strain 7 has a 36-residue extra domain at its N-terminus and a 67-residue core domain carrying two iron-sulfur clusters. A zinc ion is held at the interface of the two domains through tetrahedral coordination of three histidine residues (-6, -19 and -34) and one aspartic acid residue (-76) [Fujii, T., Hata, Y., Oozeki, M., Moriyama, H., Wakagi, T., Tanaka, N. & Oshima, T. (1997) Biochemistry 36, 1505-1513]. To elucidate the roles of the novel zinc ion and the extra N-terminal domain, a series of truncated mutants was constructed: G1, V12, S17, G23, L31 and V38, which lack residues 0, 11, 16, 22, 30 and 37 starting from the N-terminus, respectively. A mutant with two histidine residues each replaced by an alanine residue, H16A/H19A, was also constructed. All the mutant ferredoxins had two iron-sulfur clusters, while zinc was retained only in G1 and V12. The thermal stability of the proteins was investigated by monitoring A408; the melting temperature (Tm) was approximately 109 degrees C for the natural ferredoxin, approximately 109 degrees C for G1, 97.6 degrees C for V12, 89.0 degrees C for S17, 89.2 degrees C for G23, 89.3 degrees C for L31, 82.1 degrees C for V38, and 89.4 degrees C for H16A/H19A. Km and Vmax values of 2-oxoglutarate:ferredoxin oxidoreductase for natural ferredoxin, G1, S17 and L31 were similar, suggesting that electron-accepting activities were not affected by the deletion. The combination of CD and fluorescent spectroscopic analyses with truncated mutant S17 indicated that not only the clusters but also the secondary and tertiary structures were simultaneously degraded at a Tm around 89 degrees C. These results unequivocally demonstrate that the zinc ion and certain parts, but not all, of the extra sequence stretch in the N-terminal domain are responsible not for function but for thermal stabilization of the molecule.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号