首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The halophile Halomonas TD01 and its derivatives have been successfully developed as a low-cost platform for the unsterile and continuous production of chemicals. Therefore, to increase the genetic engineering stability of this platform, the DNA restriction/methylation system of Halomonas TD01 was partially inhibited. In addition, a stable and conjugative plasmid pSEVA341 with a high-copy number was constructed to contain a LacIq-Ptrc system for the inducible expression of multiple pathway genes. The Halomonas TD01 platform, was further engineered with its 2-methylcitrate synthase and three PHA depolymerases deleted within the chromosome, resulting in the production of the Halomonas TD08 strain. The overexpression of the threonine synthesis pathway and threonine dehydrogenase made the recombinant Halomonas TD08 able to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV consisting of 4–6 mol% 3-hydroxyvalerate or 3HV, from various carbohydrates as the sole carbon source. The overexpression of the cell division inhibitor MinCD during the cell growth stationary phase in Halomonas TD08 elongated its shape to become at least 1.4-fold longer than its original size, resulting in enhanced PHB accumulation from 69 wt% to 82 wt% in the elongated cells, further promoting gravity-induced cell precipitations that simplify the downstream processing of the biomass. The resulted Halomonas strains contributed to further reducing the PHA production cost.  相似文献   

2.
Genetic engineering of Halomonas spp. was seldom reported due to the difficulty of genetic manipulation and lack of molecular biology tools. Halomonas TD01 can grow in a continuous and unsterile process without other microbial contaminations. It can be therefore exploited for economic production of chemicals. Here, Halomonas TD01 was metabolically engineered using the gene knockout procedure based on markerless gene replacement stimulated by double-strand breaks in the chromosome. When gene encoding 2-methylcitrate synthase in Halomonas TD01 was deleted, the conversion efficiency of propionic acid to 3-hydroxyvalerate (3HV) monomer fraction in random PHBV copolymers of 3-hydroxybutyrate (3HB) and 3HV was increased from around 10% to almost 100%, as a result, cells were grown to accumulate 70% PHBV in dry weight (CDW) consisting of 12 mol% 3HV from 0.5 g/L propionic acid in glucose mineral medium. Furthermore, successful deletions on three PHA depolymerases eliminate the possible influence of PHA depolymerases on PHA degradation in the complicated industrial fermentation process even though significant enhanced PHA content was not observed. In two 500 L pilot-scale fermentor studies lasting 70 h, the above engineered Halomonas TD01 grew to 112 g/L CDW containing 70 wt% P3HB, and to 80 g/L CDW with 70 wt% P(3HB-co-8 mol% 3HV) in the presence of propionic acid. The cells grown in shake flasks even accumulated close to 92% PHB in CDW with a significant increase of glucose to PHB conversion efficiency from around 30% to 42% after 48 h cultivation when pyridine nucleotide transhydrogenase was overexpressed. Halomonas TD01 was also engineered for producing a PHA regulatory protein PhaR which is a robust biosurfactant.  相似文献   

3.
PHB biosynthesis pathway, consisting of three open reading frames (ORFs) that encode for β-ketothiolase (phaA Cma , 1179 bp), acetoacetyl-CoA reductase (phaB Cma , 738 bp), and PHA synthase (phaC Cma , 1694 bp), of Caldimonas manganoxidans was identified. The functions of PhaA, PhaB, and PhaC were demonstrated by successfully reconstructing PHB biosynthesis pathway of C. manganoxidans in Escherichia coli, where PHB production was confirmed by OD600, gas chromatography, Nile blue stain, and transmission electron microscope (TEM). The protein sequence alignment of PHB synthases revealed that phaC Cma shares at least 60% identity with those of class I PHB synthase. The effects of PhaA, PhaB, and PhaC expression levels on PHB production were investigated. While the overexpression of PhaB is found to be important in recombinant E. coli, performances of PHB production can be quantified as follows: PHB concentration of 16.8 ± 0.6 g/L, yield of 0.28 g/g glucose, content of 74%, productivity of 0.28 g/L/h, and Mw of 1.41 MDa.  相似文献   

4.
The moderate halophile Halomonas boliviensis, isolated from a Bolivian saline soil sample, was able to accumulate poly(β-hydroxybutyrate) (PHB) when grown under conditions of nutrient limitation and excess carbon source. The concentration of sodium chloride in the medium influenced the cell-growth, -size, and rate of PHB accumulation. Cultivation in shake flasks led to a PHB accumulation of about 54 wt.% with respect to cell dry weight at 4.5% (w/v) NaCl in a medium with butyric acid and sodium acetate as carbon sources. The production of PHB was substantially improved to a maximum value of 88 wt.% during cultivation under controlled conditions of pH and oxygen concentration in a fermentor. The use of glucose and sucrose, respectively, as carbon source could also lead to the production of PHB at an average level of 55 wt.%.  相似文献   

5.
An unsterile and continuous fermentation process was developed based on a halophilic bacterium termed Halomonas TD01 isolated from a salt lake in Xinjiang, China. The strain reached 80 g/L cell dry weight containing 80% poly(3-hydroxybutyrate) (PHB) on glucose salt medium during a 56 h fed-batch process. In a 14-day open unsterile and continuous process, the cells grew to an average of 40 g/L cell dry weight containing 60% PHB in the first fermentor with glucose salt medium. Continuous pumping of cultures from the first fermentor to the second fermentor containing the nitrogen-deficient glucose salt medium diluted the cells but allowed them to maintain a PHB level of between 65% and 70% of cell dry weight. Glucose to PHB conversions were between 20% and 30% in the first fermentor and above 50% in the second one. This unsterile and continuous fermentation process opens a new area for reducing the cost in polyhydroxyalkanoates production.  相似文献   

6.
7.
Conditional expression strains serve as a valuable tool to study the essentiality and to establish the vulnerability of a target under investigation in a drug discovery program. While essentiality implies an absolute requirement of a target function, vulnerability provides valuable information on the extent to which a target function needs to be depleted to achieve bacterial growth inhibition followed by cell death. The critical feature of an ideal conditional expression system is its ability to tightly regulate gene expression to achieve the full spectrum spanning from a high level of expression in order to support growth and near zero level of expression to mimic conditions of gene knockout. A number of bacterial conditional expression systems have been reported for use in mycobacteria. The utility of an isopropylthiogalactoside (IPTG) inducible system in mycobacteria has been reported for protein overexpression and anti-sense gene expression from a replicating multi-copy plasmid. Herein, we report the development of a versatile set of non-replicating IPTG inducible vectors for mycobacteria which can be used for generation of conditional expression strains through homologous recombination. The role of a single lac operator versus a double lac operator to regulate gene expression was evaluated by monitoring the expression levels of β-galactosidase in Mycobacterium smegmatis. These studies indicated a significant level of leaky expression from the vector with a single lac operator but none from the vector with double lac operator. The significance of the double lac operator vector for target validation was established by monitoring the growth kinetics of an inhA, a rpoB and a ftsZ conditional expression strain grown in the presence of different concentrations of IPTG. The utility of this inducible system in identifying target specific inhibitors was established by screening a focussed library of small molecules using an inhA and a rpoB conditional expression strain.  相似文献   

8.
9.
By in vitro evolution experiment, we have first succeeded in acquiring higher active mutants of a synthase that is a key enzyme essential for bacterial synthesis of biodegradable polyester, polyhydroxyalkanoate (PHA). Aeromonas caviae FA440 synthase, termed PhaCAc, was chosen as a good target for evolution, since it can synthesize a PHA random copolyester of 3-hydroxybutyrate and 3-hydroxyhexanoate [P(3HB-co-3HHx)] that is a tough and flexible material compared to polyhydroxybutyrate (PHB) homopolyester. The in vitro enzyme evolution system consists of PCR-mediated random mutagenesis targeted to a limited region of the phaCAc gene and screening mutant enzymes with higher activities based on two types of polyester accumulation system by using Escherichia coli for the synthesis of PHB (by JM109 strain) (S. Taguchi, A. Maehara, K. Takase, M. Nakahara, H. Nakamura, and Y. Doi, FEMS Microbiol. Lett. 198:65-71, 2001) and of P(3HB-co-3HHx) {by LS5218 [fadR601 atoC(Con)] strain}. The expression vector for the phaCAc gene, together with monomer-supplying enzyme genes, was designed to synthesize PHB homopolyester from glucose and P(3HB-co-3HHx) copolyester from dodecanoate. Two evolved mutant enzymes, termed E2-50 and T3-11, screened through the evolution system exhibited 56 and 21% increases in activity toward 3HB-coenzyme A, respectively, and consequently led to enhanced accumulation (up to 6.5-fold content) of P(3HB-co-3HHx) in the recombinant LS5218 strains. Two single mutations in the mutants, N149S for E2-50 and D171G for T3-11, occurred at positions that are not highly conserved among the PHA synthase family. It should be noted that increases in the 3HHx fraction (up to 16 to 18 mol%) were observed for both mutants compared to the wild type (10 mol%).  相似文献   

10.
The recent expansion of genetic and genomic tools for metabolic engineering has accelerated the development of microorganisms for the industrial production of desired compounds. We have used transposable elements to identify chromosomal locations in the obligate methanotroph Methylomonas sp. strain 16a that support high-level expression of genes involved in the synthesis of the C40 carotenoids canthaxanthin and astaxanthin. with three promoterless carotenoid transposons, five chromosomal locations—the fliCS, hsdM, ccp-3, cysH, and nirS regions—were identified. Total carotenoid synthesis increased 10- to 20-fold when the carotenoid gene clusters were inserted at these chromosomal locations compared to when the same carotenoid gene clusters were integrated at neutral locations under the control of the promoter for the gene conferring resistance to chloramphenicol. A chromosomal integration system based on sucrose lethality was used to make targeted gene deletions or site-specific integration of the carotenoid gene cluster into the Methylomonas genome without leaving genetic scars in the chromosome from the antibiotic resistance genes that are present on the integration vector. The genetic approaches described in this work demonstrate how metabolic engineering of microorganisms, including the less-studied environmental isolates, can be greatly enhanced by identifying integration sites within the chromosome of the host that permit optimal expression of the target genes.  相似文献   

11.
The effect of the increased copy number of polyhydroxybutyrate (PHB) biosynthesis genes in pink-pigmented methylobacterium Methylobacterium extorquens G10 on properties of the biopolymer was studied. The activity of poly-3-hydroxybutyrate-synthase (PHB-synthase) was shown to increase and the molecular weight of synthesized PHB decreases twofold (150 → 79 kDa) after insertion of extra copies of phaC and phaCAB genes into cells of the producer strain, whereas the physicochemical properties of the plastic changed insignificantly. White mutant M. extorquens G10-W with disrupted synthesis of the carotenoid pigment (defect by the crtI gene, which codes for phytoene desaturase) was established to have the same rate of growth and level of PHB accumulation as the initial strain G10. The G10-W strain is a promising producer of PHB, with decreased expenses for purification and PHB biosynthesis.  相似文献   

12.
《Gene》1996,172(1):81-86
A simplified procedure to construct recombinant Pseudomonas putida (Pp) and related bacteria, which transcribe conditionally specific genes inserted into their chromosome in response to lac inducers such as IPTG, has been developed. The method is based on the so-called VTR expression cassettes. These are three small (1.98-kb) DNA segments engineered as NotI restriction fragments that include a lacIq gene along with the hybrid trp/lac promoter, Ptrc, followed by an optimised translation initiation region with a leading ATG and a multiple cloning site in each of the three reading frames. This arrangement allows the chromosomal insertion of the conditionally expressed genes of interest through its transfer to any of the mini-Tn5 transposon vectors available. VTR cassettes permit construction of specialized strains that are instrumental to address, by genetic means, otherwise intractable regulatory problems observed in biodegradative pathways of Pp. In this context, the VTR system was employed to examine the effect of the intracellular concentration of XylR, the main regulator of the TOL (toluene biodegradation) plasmid pWWO, on the exponential silencing of the promoter of the upper operon, Pu. Increasing concentrations of XylR resulted in more intense induction of the system that, however, remained silent during fast cell growth regardless of activator levels.  相似文献   

13.
14.
Poly-3-hydroxyalkanoates (PHAs) are synthesized by many bacteria as intracellular storage material. The final step in PHA biosynthesis is catalyzed by two PHA polymerases (phaC) in Pseudomonas putida. The expression of these two phaC genes (phaC1 and phaC2)was studied in Escherichia coli, either under control of the native promoter or under control of an external promoter. It was found that the two phaC genes are not expressed in E. coli without an external promoter. During heterologous expression of phaC from Plac on a high copy number plasmid, a rapid reduction of the number of colony forming units was observed, especially for phaC2. It appears that the plasmid instability was partially caused by high-level production of PHA polymerase. Subsequently, tightly regulated phaC2 expression systems on a low copy number vector were applied in E. coli. This resulted in PHA yields of over 20 of total cell dry weight, which was 2 fold higher than that obtained from the system where phaC2 is present on a high copy number vector. In addition, the PHA monomer composition differed when different gene expression systems or different phaC genes were applied.  相似文献   

15.
Polyhydroxyalakanote (PHA) was produced by the marine bacteria Paracoccus seriniphilus Strain E71. Three methods were used for screening PHA in this strain: (1) microscopic analysis, (2) specifically designed primers for amplify fragments of phaC gene from Gram negative bacteria, and (3) measurements using spectroscopy, calorimetry, thermogravimetry, and rheology. The polyhydroxyalkanoic acid synthase gene (phaC) sequence had 77% identity with the phaC gene of P. denitrificans PD1222 strain. Additionally, the translated sequence showed an 86% similarity with the amino acid sequence of the phaC gene N-terminal portion of the P. denitrificans PD1222 strain. Our phaC sequence was closely related to two phaC sequences that correspond to P. denitrificans; therefore, this is the first report of a sequence of phaC that codifies a poly-(3-hydroxyalkanoate) synthase class I, specifically a poly-beta-hydroxybutyrate polymerase from the marine bacteria Paracoccus seriniphilus. The polymer PHA of E71 melts at 167.86°C (T m), which corresponded to the fusion of the crystalline polymer and thermally degrades at 296.52°C, indicating that the biopolymer has good thermal stability. Rheology showed that this polymer behaves as a nonNewtonian fluid. All these characteristics suggest that the E71 strain produces a PHA that corresponds to the crystalline thermoplastic polymer PHB type.  相似文献   

16.
17.
18.
Schneider line 2 cells, derived from Drosophila melanogaster, can be used as a highly versatile gene expression system. Two powerful promoters derived from the actin5C (Ac5) and metallothionein (Mtn) genes are available. The Mtn promoter can be used for the inducible expression of heterologous proteins unsuitable for constitutive expression. However, to circumvent using CuSO4 or CdCl2 as inducers of the Mtn promoter, we created a modified Ac5 promoter, Ac5LacO, in which two short lac operator sequences are embedded. Expression from the Ac5LacO promoter was regulated with co-expression of the lac repressor and IPTG. More than 25-fold induction of firefly luciferase expression was achieved in transient transfection experiments. Furthermore, we demonstrated that the lac operator–repressor regulatory system functioned in chromosomally integrated cell lines.  相似文献   

19.
Ronald D. Porter 《Genetics》1983,105(2):247-257
Several aspects of the recombination resulting from λ plac5 transduction were investigated in strains of Escherichia coli K-12 that use the RecE or RecF recombination pathways. In a RecBC pathway strain, F42lac recombination with λplac5 is 20- to 50-fold higher than chromosomal lac times λplac5 recombination, and this recombination enhancement is largely dependent on constitutive expression of F42lac fertility functions. Here, it was observed that F42 lac fertility functions do not effect the ability of F42lac to recombine with λplac5 in a RecE or RecF pathway strain. Therefore, the enhancement observed in a Rec+ (or RecBC pathway) strain is directly dependent on the recBC gene product. The end product of recombination between λplac5 and either F42lac or chromosomal lac in RecE and RecF pathway strains was monitored by scoring for addition and substitution transductants. It was observed that the percentage of addition transductants was lower in all cases for RecE and RecF pathway strains as compared with RecBC pathway or a recB strain. It is concluded that the introduction of sbcA or sbcB into a recB strain produces a change in recombination mechanism that is reflected in the nature of the end product of recombination.  相似文献   

20.
Polyhydroxyalkanoates (PHAs) are biodegradable bioplastics that are synthesized by diverse bacteria. In this study, the synthesis of PHAs by the model aromatic-degrading strain Burkholderia xenovorans LB400 was analyzed. Twelve pha genes including three copies of phaC and five copies of the phasin-coding phaP genes are distributed among the three LB400 replicons. The phaC1ABR gene cluster that encodes the enzymes of the PHA anabolic pathway is located at chromosome 1 of strain LB400. During the growth of strain LB400 on glucose under nitrogen limitation, the expression of the phaC1, phaA, phaP1, phaR, and phaZ genes was induced. Under nitrogen limitation, PHA accumulation in LB400 cells was observed by fluorescence microscopy after Nile Red staining. GC-MS analyses revealed that the PHA accumulated under nitrogen limitation was poly(3-hydroxybutyrate) (PHB). LB400 cells grown on glucose as the sole carbon source under nitrogen limitation accumulated 40?±?0.96% PHB of the cell dry weight, whereas no PHA was observed in cells grown in control medium. The functionality of the phaC1 gene from strain LB400 was further studied using heterologous expression in a Pseudomonas putida KT40C1ZC2 mutant strain derived from P. putida KT2440 that is unable to synthesize PHAs. Interestingly, KT40C1ZC2[pVNC1] cells that express the phaC1 gene from strain LB400 were able to synthesize PHB (33.5% dry weight). This study indicates that B. xenovorans LB400 possesses a functional PHA synthetic pathway that is encoded by the pha genes and is capable of synthesizing PHB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号