首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacterial biofilms cause chronic diseases that are difficult to control. Since biofilm formation in space is well documented and planktonic cells become more resistant and virulent under modeled microgravity, it is important to determine the effect of this gravity condition on biofilms. Inclusion of glass microcarrier beads of appropriate dimensions and density with medium and inoculum, in vessels specially designed to permit ground-based investigations into aspects of low-shear modeled microgravity (LSMMG), facilitated these studies. Mathematical modeling of microcarrier behavior based on experimental conditions demonstrated that they satisfied the criteria for LSMMG conditions. Experimental observations confirmed that the microcarrier trajectory in the LSMMG vessel concurred with the predicted model. At 24 h, the LSMMG Escherichia coli biofilms were thicker than their normal-gravity counterparts and exhibited increased resistance to the general stressors salt and ethanol and to two antibiotics (penicillin and chloramphenicol). Biofilms of a mutant of E. coli, deficient in σs, were impaired in developing LSMMG-conferred resistance to the general stressors but not to the antibiotics, indicating two separate pathways of LSMMG-conferred resistance.  相似文献   

2.
Only limited information is available concerning the effects of low-shear modeled microgravity (LSMMG) on cell function and morphology. We examined the behavior of Saccharomyces cerevisiae grown in a high-aspect-ratio vessel, which simulates the low-shear and microgravity conditions encountered in spaceflight. With the exception of a shortened lag phase (90 min less than controls; P < 0.05), yeast cells grown under LSMMG conditions did not differ in growth rate, size, shape, or viability from the controls but did differ in the establishment of polarity as exhibited by aberrant (random) budding compared to the usual bipolar pattern of controls. The aberrant budding was accompanied by an increased tendency of cells to clump, as indicated by aggregates containing five or more cells. We also found significant changes (greater than or equal to twofold) in the expression of genes associated with the establishment of polarity (BUD5), bipolar budding (RAX1, RAX2, and BUD25), and cell separation (DSE1, DSE2, and EGT2). Thus, low-shear environments may significantly alter yeast gene expression and phenotype as well as evolutionary conserved cellular functions such as polarization. The results provide a paradigm for understanding polarity-dependent cell responses to microgravity ranging from pathogenesis in fungi to the immune response in mammals.  相似文献   

3.
Bacterial biofilms cause chronic diseases that are difficult to control. Since biofilm formation in space is well documented and planktonic cells become more resistant and virulent under modeled microgravity, it is important to determine the effect of this gravity condition on biofilms. Inclusion of glass microcarrier beads of appropriate dimensions and density with medium and inoculum, in vessels specially designed to permit ground-based investigations into aspects of low-shear modeled microgravity (LSMMG), facilitated these studies. Mathematical modeling of microcarrier behavior based on experimental conditions demonstrated that they satisfied the criteria for LSMMG conditions. Experimental observations confirmed that the microcarrier trajectory in the LSMMG vessel concurred with the predicted model. At 24 h, the LSMMG Escherichia coli biofilms were thicker than their normal-gravity counterparts and exhibited increased resistance to the general stressors salt and ethanol and to two antibiotics (penicillin and chloramphenicol). Biofilms of a mutant of E. coli, deficient in sigma(s), were impaired in developing LSMMG-conferred resistance to the general stressors but not to the antibiotics, indicating two separate pathways of LSMMG-conferred resistance.  相似文献   

4.
We have previously demonstrated that low-shear modeled microgravity (low-shear MMG) serves to enhance the virulence of a bacterial pathogen, Salmonella enterica serovar Typhimurium. The Salmonella response to low-shear MMG involves a signaling pathway that we have termed the low-shear MMG stimulon, though the identities of the low-shear MMG stimulon genes and regulatory factors are not known. RpoS is the primary sigma factor required for the expression of genes that are induced upon exposure to different environmental-stress signals and is essential for virulence in mice. Since low-shear MMG induces a Salmonella acid stress response and enhances Salmonella virulence, we reasoned that RpoS would be a likely regulator of the Salmonella low-shear MMG response. Our results demonstrate that low-shear MMG provides cross-resistance to several environmental stresses in both wild-type and isogenic rpoS mutant strains. Growth under low-shear MMG decreased the generation time of both strains in minimal medium and increased the ability of both strains to survive in J774 macrophages. Using DNA microarray analysis, we found no evidence of induction of the RpoS regulon by low-shear MMG but did find that other genes were altered in expression under these conditions in both the wild-type and rpoS mutant strains. Our results indicate that, under the conditions of these studies, RpoS is not required for transmission of the signal that induces the low-shear MMG stimulon. Moreover, our studies also indicate that low-shear MMG can be added to a short list of growth conditions that can serve to preadapt an rpoS mutant for resistance to multiple environmental stresses.  相似文献   

5.

Long-term space flight impairs the immune system of astronauts, rendering them vulnerable to opportunistic infections. Pseudomonas aeruginosa causes opportunistic infections, particularly in individuals with a compromised immune system; it can be a major health hazard for astronauts during space flight missions. Hence, the production of the most abundant redox active virulence factor, pyocyanin by P. aeruginosa, was assessed under low-shear modeled microgravity (LSMMG) conditions, simulated using a high aspect ratio vessel. Moreover, we evaluated changes in the expression of genes involved in pyocyanin biosynthesis and genes involved in the MexGHI-OpmD operon quorum sensing. Extracellular DNA and H2O2 production were measured, and their correlation with pyocyanin production was examined. Interestingly, the pyocyanin quantity was 2.58-fold lower in the LSMMG conditions compared to the normal gravity. LSMMG caused downregulation of the genes associated with pyocyanin biosynthesis. Interestingly, extracellular DNA and H2O2 release were significantly high in the normal gravity environment. Scanning electron microscopy revealed aggregation and elongated cells under LSMMG. Taken together, these findings suggest that LSMMG did not induce pyocyanin secretion in P. aeruginosa.

  相似文献   

6.
The aim of this study is to provide understanding of microgravity effects on important food-borne bacteria, Escherichia coli O157:H7 ATCC 35150, ATCC 43889, and ATCC 43895, cultured in nutrient-rich or minimal medium. Physiological characteristics, such as growth (measured by optical density and plating), cell morphology, and pH, were monitored under low-shear modeled microgravity (LSMMG; space conditions) and normal gravity (NG; Earth conditions). In nutrient-rich medium, all strains except ATCC 35150 showed significantly higher optical density after 6 h of culture under LSMMG conditions than under NG conditions (P < 0.05). LSMMG-cultured cells were approximately 1.8 times larger than NG-cultured cells at 24 h; therefore, it was assumed that the increase in optical density was due to the size of individual cells rather than an increase in the cell population. The higher pH of the NG cultures relative to that of the LSMMG cultures suggests that nitrogen metabolism was slower in the latter. After 24 h of culturing in minimal media, LSMMG-cultured cells had an optical density 1.3 times higher than that of NG-cultured cells; thus, the higher optical density in the LSMMG cultures may be due to an increase in both cell size and number. Since bacteria actively grew under LSMMG conditions in minimal medium despite the lower pH, it is of some concern that LSMMG-cultured E. coli O157:H7 may be able to adapt well to acidic environments. These changes may be caused by changes in nutrient metabolism under LSMMG conditions, although this needs to be demonstrated in future studies.  相似文献   

7.
8.
9.
Only limited information is available concerning the effects of low-shear modeled microgravity (LSMMG) on cell function and morphology. We examined the behavior of Saccharomyces cerevisiae grown in a high-aspect-ratio vessel, which simulates the low-shear and microgravity conditions encountered in spaceflight. With the exception of a shortened lag phase (90 min less than controls; P < 0.05), yeast cells grown under LSMMG conditions did not differ in growth rate, size, shape, or viability from the controls but did differ in the establishment of polarity as exhibited by aberrant (random) budding compared to the usual bipolar pattern of controls. The aberrant budding was accompanied by an increased tendency of cells to clump, as indicated by aggregates containing five or more cells. We also found significant changes (greater than or equal to twofold) in the expression of genes associated with the establishment of polarity (BUD5), bipolar budding (RAX1, RAX2, and BUD25), and cell separation (DSE1, DSE2, and EGT2). Thus, low-shear environments may significantly alter yeast gene expression and phenotype as well as evolutionary conserved cellular functions such as polarization. The results provide a paradigm for understanding polarity-dependent cell responses to microgravity ranging from pathogenesis in fungi to the immune response in mammals.  相似文献   

10.
Microbial adaptation to environmental stimuli is essential for survival. While several of these stimuli have been studied in detail, recent studies have demonstrated an important role for a novel environmental parameter in which microgravity and the low fluid shear dynamics associated with microgravity globally regulate microbial gene expression, physiology, and pathogenesis. In addition to analyzing fundamental questions about microbial responses to spaceflight, these studies have demonstrated important applications for microbial responses to a ground-based, low-shear stress environment similar to that encountered during spaceflight. Moreover, the low-shear growth environment sensed by microbes during microgravity of spaceflight and during ground-based microgravity analogue culture is relevant to those encountered during their natural life cycles on Earth. While no mechanism has been clearly defined to explain how the mechanical force of fluid shear transmits intracellular signals to microbial cells at the molecular level, the fact that cross talk exists between microbial signal transduction systems holds intriguing possibilities that future studies might reveal common mechanotransduction themes between these systems and those used to sense and respond to low-shear stress and changes in gravitation forces. The study of microbial mechanotransduction may identify common conserved mechanisms used by cells to perceive changes in mechanical and/or physical forces, and it has the potential to provide valuable insight for understanding mechanosensing mechanisms in higher organisms. This review summarizes recent and future research trends aimed at understanding the dynamic effects of changes in the mechanical forces that occur in microgravity and other low-shear environments on a wide variety of important microbial parameters.  相似文献   

11.
Microbial responses to microgravity and other low-shear environments.   总被引:2,自引:0,他引:2  
Microbial adaptation to environmental stimuli is essential for survival. While several of these stimuli have been studied in detail, recent studies have demonstrated an important role for a novel environmental parameter in which microgravity and the low fluid shear dynamics associated with microgravity globally regulate microbial gene expression, physiology, and pathogenesis. In addition to analyzing fundamental questions about microbial responses to spaceflight, these studies have demonstrated important applications for microbial responses to a ground-based, low-shear stress environment similar to that encountered during spaceflight. Moreover, the low-shear growth environment sensed by microbes during microgravity of spaceflight and during ground-based microgravity analogue culture is relevant to those encountered during their natural life cycles on Earth. While no mechanism has been clearly defined to explain how the mechanical force of fluid shear transmits intracellular signals to microbial cells at the molecular level, the fact that cross talk exists between microbial signal transduction systems holds intriguing possibilities that future studies might reveal common mechanotransduction themes between these systems and those used to sense and respond to low-shear stress and changes in gravitation forces. The study of microbial mechanotransduction may identify common conserved mechanisms used by cells to perceive changes in mechanical and/or physical forces, and it has the potential to provide valuable insight for understanding mechanosensing mechanisms in higher organisms. This review summarizes recent and future research trends aimed at understanding the dynamic effects of changes in the mechanical forces that occur in microgravity and other low-shear environments on a wide variety of important microbial parameters.  相似文献   

12.
Salmonella typhimurium is a potentially intracellular pathogen and is responsible for thousands of reported cases of acute gastroenteritis and diarrhea each year. Although many successful physiological and genetic approaches have been taken to conclude the key virulence determinants encoded by this organism, the total number of uncharacterized reading frames observed within the S. typhimurium genome suggests that many virulence factors remain to be discovered. This study was conducted to evaluate the role of heat induced phage shock protein A (PspA), in the pathogenicity of S. typhimurium. The stress proteins detected on sodium dodecyl sulfate-polyacrylamide gel electrophoresis were identified specifically by immunoblotting with polyclonal antibody against PspA. PspA was produced in response to heat stress at 45°C and it was over-expressed at 65°C. At this temperature, the stressed bacterial cells producing PspA were more virulent (16 folds greater) to female 6–8 week-old Balb/c mice. Correspondency between decrease in LD50 and increase in PspA production during heat stress and lower pathogenicity in non-producing cells that emerged during stress at 55°C represents PspA as an important virulence factor in heat stressed S. typhimurium.  相似文献   

13.
The two-component system (TCS) KdpD/KdpE, extensively studied for its regulatory role in potassium (K+) transport, has more recently been identified as an adaptive regulator involved in the virulence and intracellular survival of pathogenic bacteria, including Staphylococcus aureus, entero-haemorrhagic Escherichia coli, Salmonella typhimurium, Yersinia pestis, Francisella species, Photorhabdus asymbiotica, and mycobacteria. Key homeostasis requirements monitored by KdpD/KdpE and other TCSs such as PhoP/PhoQ are critical to survival in the stressful conditions encountered by pathogens during host interactions. It follows these TCSs may therefore acquire adaptive roles in response to selective pressures associated with adopting a pathogenic lifestyle. Given the central role of K+ in virulence, we propose that KdpD/KdpE, as a regulator of a high-affinity K+ pump, has evolved virulence-related regulatory functions. In support of this hypothesis, we review the role of KdpD/KdpE in bacterial infection and summarize evidence that (i) KdpD/KdpE production is correlated with enhanced virulence and survival, (ii) KdpE regulates a range of virulence loci through direct promoter binding, and (iii) KdpD/KdpE regulation responds to virulence-related conditions including phagocytosis, exposure to microbicides, quorum sensing signals, and host hormones. Furthermore, antimicrobial stress, osmotic stress, and oxidative stress are associated with KdpD/KdpE activity, and the system''s accessory components (which allow TCS fine-tuning or crosstalk) provide links to stress response pathways. KdpD/KdpE therefore appears to be an important adaptive TCS employed during host infection, promoting bacterial virulence and survival through mechanisms both related to and distinct from its conserved role in K+ regulation.  相似文献   

14.
15.
Perturbations to host–microbe interactions, such as environmental stress, can alter and disrupt homeostasis. In this study, we examined the effects of a stressor, simulated microgravity, on beneficial bacteria behaviours when colonising their host. We studied the bacterium Vibrio fischeri, which establishes a mutualistic association in a symbiosis-specific organ within the bobtail squid, Euprymna scolopes. To elucidate how animal–microbe interactions are affected by the stress of microgravity, squid were inoculated with different bacterial strains exhibiting either a dominant- or sharing-colonisation behaviour in High Aspect Ratio Vessels, which simulate the low-shear environment of microgravity. The colonisation behaviours of the sharing and dominant strains under modelled microgravity conditions were determined by counting light-organ homogenate of squids as well as confocal microscopy to assess the partitioning of different strains within the light organ. The results indicated that although the colonisation behaviours of the strains did not change, the population levels of the sharing strains were at lower relative abundance in single-colonised animals exposed to modelled microgravity compared to unit gravity; in addition, there were shifts in the relative abundance of strains in co-colonised squids. Together these results suggest that the initiation of beneficial interactions between microbes and animals can be altered by environmental stress, such as simulated microgravity.  相似文献   

16.
We have previously demonstrated that low-shear modeled microgravity (low-shear MMG) serves to enhance the virulence of a bacterial pathogen, Salmonella enterica serovar Typhimurium. The Salmonella response to low-shear MMG involves a signaling pathway that we have termed the low-shear MMG stimulon, though the identities of the low-shear MMG stimulon genes and regulatory factors are not known. RpoS is the primary sigma factor required for the expression of genes that are induced upon exposure to different environmental-stress signals and is essential for virulence in mice. Since low-shear MMG induces a Salmonella acid stress response and enhances Salmonella virulence, we reasoned that RpoS would be a likely regulator of the Salmonella low-shear MMG response. Our results demonstrate that low-shear MMG provides cross-resistance to several environmental stresses in both wild-type and isogenic rpoS mutant strains. Growth under low-shear MMG decreased the generation time of both strains in minimal medium and increased the ability of both strains to survive in J774 macrophages. Using DNA microarray analysis, we found no evidence of induction of the RpoS regulon by low-shear MMG but did find that other genes were altered in expression under these conditions in both the wild-type and rpoS mutant strains. Our results indicate that, under the conditions of these studies, RpoS is not required for transmission of the signal that induces the low-shear MMG stimulon. Moreover, our studies also indicate that low-shear MMG can be added to a short list of growth conditions that can serve to preadapt an rpoS mutant for resistance to multiple environmental stresses.  相似文献   

17.
Chestnut blight is a devastating disease of Castanea spp. Mycoviruses that reduce virulence (hypovirulence) of the causative agent, Cryphonectria parasitica, can be used to manage chestnut blight. However, vegetative incompatibility (vic) barriers that restrict anastomosis-mediated virus transmission hamper hypovirulence efficacy. In order to effectively determine the vegetative incompatibility genetic structure of C. parasitica field populations, we have designed PCR primer sets that selectively amplify and distinguish alleles for each of the six known diallelic C. parasitica vic genetic loci. PCR assay results were validated using a panel of 64 European tester strains with genetically determined vic genotypes. Analysis of 116 C. parasitica isolates collected from five locations in the eastern United States revealed 39 unique vic genotypes and generally good agreement between PCR and tester strain coculturing assays in terms of vic diversity and genotyping. However, incongruences were observed for isolates from multiple locations and suggested that the coculturing assay can overestimate diversity at the six known vic loci. The availability of molecular tools for rapid and precise vic genotyping significantly improves the ability to predict and evaluate the efficacy of hypovirulence and related management strategies.  相似文献   

18.
Feeding Caenorhabditis elegans with Salmonella enterica serovar Typhimurium significantly shortens the lifespan of the nematode. S. Typhimurium-infected C. elegans, stained with 2′,7′-dichlorodihydrofluorescein diacetate which fluoresces upon exposure to reactive oxygen species, revealed intestinal luminal staining that along with the time of infection progressed to a strong staining in the hypodermal tissues of the nematode. Still, we could not detect invasion beyond the nematode''s intestinal epithelium at any stage of the infection. A similar dispersion of oxidative response was also noted in nematodes infected with S. Dublin, but not with non-pathogenic Escherichia coli or the defined pathogen Burkholderia thailandensis. Addition of catalase or the reductant ascorbic acid significantly restored the lifespan of S. Typhimurium-infected nematodes. Mutational inactivation of the bacterial thioredoxin 1 resulted in total ablation of the hypodermal oxidative response to infection, and in a strong attenuation of virulence. Virulence of the thioredoxin 1 mutant was restored by trans-complementation with redox-active variants of thioredoxin 1 or, surprisingly, by exposing the thioredoxin 1 mutant to sublethal concentrations of the disulphide catalyst copper chloride prior to infection. In summary, our observations define a new aspect in virulence of S. enterica that apparently does not involve the classical invasive or intracellular phenotype of the pathogen, but that depends on the ability to provoke overwhelming systemic oxidative stress in the host through the redox activity of bacterial thioredoxin 1.  相似文献   

19.
Uridine triphosphate (UTP)-glucose-1-phosphate uridylyltransferase (GalU; EC 2.7.7.9) is an enzyme that catalyzes the formation of uridine diphosphate (UDP)-glucose from UTP and glucose-1-phosphate. GalU is involved in virulence in a number of animal-pathogenic bacteria since its product, UDP-glucose, is indispensable for the biosynthesis of virulence factors such as lipopolysaccharide and exopolysaccharide. However, its function in Xanthomonas campestris pv. campestris, the phytopathogen that causes black rot in cruciferous plants, is unclear. Here, we characterized a galU mutant of X. campestris pv. campestris and showed that the X. campestris pv. campestris galU mutant resulted in a reduction in virulence on the host cabbage. We also demonstrated that galU is involved in bacterial attachment, cell motility, and polysaccharide synthesis. Furthermore, the galU mutant showed increased sensitivity to various stress conditions including copper sulfate, hydrogen peroxide, and sodium dodecyl sulfate. In addition, mutation of galU impairs the expression of the flagellin gene fliC as well as the attachment-related genes xadA, fhaC, and yapH. In conclusion, our results indicate involvement of galU in the virulence factor production and pathogenicity in X. campestris pv. campestris, and a role for galU in stress tolerance of this crucifer pathogen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号