首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Carbohydrates are much more than just a source of energy as they also mediate a variety of recognition processes that are central to human health. As such, saccharides can be applied in the food and pharmaceutical industries to stimulate our immune system (e.g., prebiotics), to control diabetes (e.g., low-calorie sweeteners), or as building blocks for anticancer and antiviral drugs (e.g., L: -nucleosides). Unfortunately, only a small number of all possible monosaccharides are found in nature in sufficient amounts to allow their commercial exploitation. Consequently, so-called rare sugars have to be produced by (bio)chemical processes starting from cheap and widely available substrates. Three enzyme classes that can be used for rare sugar production are keto-aldol isomerases, epimerases, and oxidoreductases. In this review, the recent developments in rare sugar production with these biocatalysts are discussed.  相似文献   

3.
Applied Microbiology and Biotechnology - Functional sugars have attracted attention because of their wide application prospects in the food, cosmetics, and pharmaceutical industries in recent...  相似文献   

4.
A synthetic platform for the cascade synthesis of rare sugars using Escherichia coli whole cells was established. In the cascade, the donor substrate dihydroxyacetone phosphate (DHAP) was generated from glycerol by glycerol kinase (GK) and glycerol phosphate oxidase (GPO). The acceptor d-glyceraldehyde was directly produced from glycerol by an alditol oxidase. Then, the aldol reaction between DHAP and d-glyceraldehyde was performed by l-rhamnulose-1-phosphate aldolase (RhaD) to generate the corresponding sugar-1-phosphate. Finally, the phosphate group was removed by fructose-1-phosphatase (YqaB) to obtain the rare sugars d-sorbose and d-psicose. To accomplish this goal, the alditol oxidase from Streptomyces coelicolor (AldOS.coe) was expressed in E. coli and the purified AldOS.coe was characterized. Furthermore, a recombinant E. coli strain overexpressing six enzymes including AldOS.coe was constructed. Under the optimized conditions, it produced 7.9 g/L of d-sorbose and d-psicose with a total conversion rate of 17.7% from glycerol. This study provides a useful and cost-effective method for the synthesis of rare sugars.  相似文献   

5.
The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion.  相似文献   

6.
Perspectives for biotechnological production of biodiesel and impacts   总被引:3,自引:0,他引:3  
In recent years, biological ways for biodiesel production have drawn an increasing attention and compared to chemical approaches, lipase-mediated alcoholysis for biodiesel production has many advantages. Currently, there are extensive reports about enzyme-mediated alcoholysis for biodiesel production, and based on the application forms of biocatalyst, the related research can be classified into immobilized lipase, whole cell catalyst, and liquid lipase-mediated alcoholysis for biodiesel production, respectively. This mini-review is focusing on the study of the aforementioned three forms of biocatalyst for biodiesel production, as well as its impacts and prospects.  相似文献   

7.
Xylitol is the first rare sugar that has global markets. It has beneficial health properties and represents an alternative to current conventional sweeteners. Industrially, xylitol is produced by chemical hydrogenation of d-xylose into xylitol. The biotechnological method of producing xylitol by metabolically engineered yeasts, Saccharomyces cerevisiae or Candida, has been studied as an alternative to the chemical method. Due to the industrial scale of production, xylitol serves as an inexpensive starting material for the production of other rare sugars. The second part of this mini-review on xylitol will look more closely at the biotechnological production and future applications of the rare sugar, xylitol.  相似文献   

8.
Many plant‐derived agents are being used to treat cancer, including taxol, vinblastine, vincristine, or camptothecin and podophyllotoxin derivatives, among others. Plant biotechnology can provide a new tool for the production of anticancer agents but in spite of considerable efforts to produce vinblastine and vincristine in cell cultures and knowledge of the biosynthetic pathway of Catharanthus roseus alkaloids, the biotechnological production of taxol has only been achieved at an industrial level by companies such as Phyton Biotech and Cytoclonal Pharmaceutics. Podophyllotoxin was isolated as the active antitumor agent from the roots of Podophyllum species and more recently from the genus Linum and others. Etoposide, teniposide, and etophos are semi‐synthetic derivatives of podophyllotoxin and are used in the treatment of cancer. Biotechnological approaches, including the use of cell cultures, biotransformation, or metabolic engineering techniques to manipulate the biosynthetic pathway, represent an alternative for the production of podophyllotoxin and are discussed in this review.  相似文献   

9.
The biotechnological production of recombinant proteins is challenged by processes that decrease the yield, such as protease action, aggregation, or misfolding. Today, the variation of strains and vector systems or the modulation of inducible promoter activities is commonly used to optimize expression systems. Alternatively, aggregation to inclusion bodies may be a desired starting point for protein isolation and refolding. The discovery of the twin-arginine translocation (Tat) system for folded proteins now opens new perspectives because in most cases, the Tat machinery does not allow the passage of unfolded proteins. This feature of the Tat system can be exploited for biotechnological purposes, as expression systems may be developed that ensure a virtually complete folding of a recombinant protein before purification. This review focuses on the characteristics that make recombinant Tat systems attractive for biotechnology and discusses problems and possible solutions for an efficient translocation of folded proteins.  相似文献   

10.
Panax ginseng C.A. Meyer (ginseng) is a well-known medicinal plant that has been traditionally used in the oriental countries for centuries. Wild ginseng is a scarce and rare commodity. Field cultivation of the ginseng plant is a time-consuming and labor-intensive process. Ginsenosides, a group of glycosylated triterpenes, also known as saponins, are the principal bioactive constituents of ginseng. The use of cell and organ culture processes has been sought as a potential alternative for the efficient mass production of ginseng raw material. Various bioprocessing strategies have been developed to date. Cells and adventitious roots have been cultured in large-scale bioreactors and various strategies have been developed accordingly for the enhancement of biomass and ginsenoside accumulation. This review highlights the recent progress in the cultivation of ginseng cell and organ cultures for the production of ginsenosides from bioreactor cultures. In addition, the metabolism and biochemistry of ginsenoside biosynthesis, genomic and proteomic studies in ginseng, metabolic engineering, biosafety, toxicological evaluation, and efficacy assessment of ginseng raw material are also summarized and thoroughly discussed.  相似文献   

11.
The biotechnological production of sorbitol   总被引:2,自引:0,他引:2  
Sorbitol, a polyol found in many fruits, is of increasing industrial interest as a sweetener, humectant, texturizer and softener. At present, it is produced chemically. The bacterium Zymomonas mobilis is able to produce sorbitol and gluconic acid from fructose and glucose, respectively. This is possible in a one-step reaction via a glucose-fructose oxidoreductase so far only known from Z. mobilis. The possibilities for the industrial production of sorbitol by Z. mobilis are discussed, and compared with the current chemical production method as well as other microbiological processes. Electronic Publication  相似文献   

12.
稀有糖的生物转化生产策略:Izumoring方法   总被引:4,自引:0,他引:4  
稀有糖是在自然界中存在但含量极少的一类单糖及衍生物,其在膳食、保健、医药等领域中发挥着重要的功能。本文综述了一种稀有糖的生物转化生产策略----Izumoring方法,即利用D-塔格糖3-差向异构酶、醛糖异构酶和多元醇脱氢酶等进行所有单糖及糖醇之间的相互转化;利用该原则,分别构建了己糖类、戊糖类和丁糖类的Izumoring转化策略,并可获得所有稀有糖的酶反应和生物转化生产途径。同时,展望了稀有糖生物转化生产的研究趋势。  相似文献   

13.
Hirudin is a potent thrombin inhibitor originally derived from the medicinal leech, Hirudo medicinalis. Owing to its high affinity and specificity for thrombin, hirudin has been intensively investigated for research and therapeutic purposes. The investigation of hirudin has contributed greatly to the understanding of the mode of action of thrombin and the clotting system. Hirudin and several hirudin analogues have also been demonstrated to have several advantages as a highly specific anticoagulant over the most widely used drug, heparin. Due to the great demand for hirudin in physicochemical and clinical studies, various recombinant systems have been developed, using bacteria, yeasts, and higher eukaryotes, to obtain the biologically active hirudin in significant quantities. After 10 years of clinical applications, two recombinant hirudins and a hirudin analogue have gained marketing approval from the United States Food and Drug Administration, for several applications. Clinical trials are currently ongoing for other treatments for thrombotic disease. As a consequence, it is conceivable that hirudin may expand its therapeutic utility over heparin in the near future.  相似文献   

14.
Serotonin derivatives belong to a class of phenylpropanoid amides found at low levels in a wide range of plant species. Representative serotonin derivatives include feruloylserotonin (FS) and 4-coumaroylserotonin (CS). Since the first identification of serotonin derivatives in safflower seeds, their occurrence, biological significance, and pharmacological properties have been reported. Recently, serotonin N-hydroxycinnamoyl transferase (SHT), which is responsible for the synthesis of serotonin derivatives, was cloned from pepper (Capsicum annuum) and characterized in terms of its enzyme kinetics. Using the SHT gene, many attempts have been made to either increase the level of serotonin derivatives in transgenic plants or produce serotonin derivatives de novo in microbes by dual expression of key genes such as SHT and 4-coumarate-CoA ligase (4CL). Due to the strong antioxidant activity and other therapeutic properties of serotonin derivatives, these compounds may have high potential in treatment and prophylaxis, as cosmetic ingredients, and as major components of functional foods or feeds that have health-improving effects. This review examines the biosynthesis of serotonin derivatives, corresponding enzymes, heterologous production in plants or microbes, and their applications.  相似文献   

15.
Metabolic pathways and biotechnological production of l-cysteine   总被引:1,自引:0,他引:1  
l-Cysteine is an important amino acid both biologically and commercially. Although most amino acids are commercially produced by fermentation, cysteine is mainly produced by protein hydrolysis. However, synthetic or biotechnological products have been preferred in the market. Biotechnological processes for cysteine production, both enzymatic and fermentative processes, are discussed. Enzymatic process, the asymmetric hydrolysis of dl-2-amino-Δ2-thiazoline-4-carboxylic acid to l-cysteine, has been developed and industrialized. The l-cysteine biosynthetic pathways of Escherichia coli and Corynebacterium glutamicum, which are used in many amino acid production processes, are also described. These two bacteria have basically same l-cysteine biosynthetic pathways. l-Cysteine-degrading enzymes and l-cysteine-exporting proteins both in E. coli and C. glutamicum are also described. In conclusion, for the effective fermentative production of l-cysteine directly from glucose, the combination of enhancing biosynthetic activity, weakening the degradation pathway, and exploiting the export system seems to be effective.  相似文献   

16.
Selenocysteine in proteins-properties and biotechnological use   总被引:3,自引:0,他引:3  
Selenocysteine (Sec), the 21st amino acid, exists naturally in all kingdoms of life as the defining entity of selenoproteins. Sec is a cysteine (Cys) residue analogue with a selenium-containing selenol group in place of the sulfur-containing thiol group in Cys. The selenium atom gives Sec quite different properties from Cys. The most obvious difference is the lower pK(a) of Sec, and Sec is also a stronger nucleophile than Cys. Proteins naturally containing Sec are often enzymes, employing the reactivity of the Sec residue during the catalytic cycle and therefore Sec is normally essential for their catalytic efficiencies. Other unique features of Sec, not shared by any of the other 20 common amino acids, derive from the atomic weight and chemical properties of selenium and the particular occurrence and properties of its stable and radioactive isotopes. Sec is, moreover, incorporated into proteins by an expansion of the genetic code as the translation of selenoproteins involves the decoding of a UGA codon, otherwise being a termination codon. In this review, we will describe the different unique properties of Sec and we will discuss the prerequisites for selenoprotein production as well as the possible use of Sec introduction into proteins for biotechnological applications. These include residue-specific radiolabeling with gamma or positron emitters, the use of Sec as a reactive handle for electophilic probes introducing fluorescence or other peptide conjugates, as the basis for affinity purification of recombinant proteins, the trapping of folding intermediates, improved phasing in X-ray crystallography, introduction of 77Se for NMR spectroscopy, or, finally, the analysis or tailoring of enzymatic reactions involving thiol or oxidoreductase (redox) selenolate chemistry.  相似文献   

17.
A putative recombinant enzyme from Dictyoglomus turgidum was characterized and immobilized on Duolite A568 beads. The native enzyme was a 46 kDa tetramer. Its activity was highest for l-rhamnose, indicating that it is an l-rhamnose isomerase. The maximum activities of both the free and immobilized enzymes for l-rhamnose isomerization were at pH 8.0 and 75 °C in the presence of Mn2+. Under these conditions, the half-lives of the free and immobilized enzymes were 28 and 112 h, respectively. In a packed-bed bioreactor, the immobilized enzyme produced an average of 130 g l-rhamnulose l?1 from 300 g l-rhamnose l?1 after 240 h at pH 8.0, 70 °C, and 0.6 h?1, with a productivity of 78 g l?1 h?1 and a conversion yield of 43 %. To the best of our knowledge, this is the first report describing the enzymatic production of l-rhamnulose.  相似文献   

18.
Biotin (vitamin H) is one of the most fascinating cofactors involved in central pathways in pro- and eukaryotic cell metabolism. Since its original discovery in 1901, research has led to the discovery of the complete biotin biosynthesis pathways in many different microbes and much work has been done on the highly intriguing and complex biochemistry of biotin biosynthesis. While humans and animals require several hundred micrograms of biotin per day, most microbes, plants and fungi appear to be able to synthesize the cofactor themselves. Biotin is added to many food, feed and cosmetic products, creating a world market of 10-30 t/year. However, the majority of the biotin sold is synthesized in a chemical process. Since the chemical synthesis is linked with a high environmental burden, much effort has been put into the development of biotin-overproducing microbes. A summary of biotin biosynthesis and its biological role is presented; and current strategies for the improvement of microbial biotin production using modern biotechnological techniques are discussed.  相似文献   

19.
The L-rhamnose isomerase gene (rhi) of Mesorhizobium loti was cloned and expressed in Escherichia coli, and then characterized. The enzyme exhibited activity with respect to various aldoses, including D-allose and L-talose. Application of it in L-talose production from galactitol was achieved by a two-step reaction, indicating that it can be utilized in the large-scale production of L-talose.  相似文献   

20.
Biotechnological approaches to practical production of biological protein-based adhesives have had limited success over the last several decades. Broader efforts to produce recombinant adhesive proteins may have been limited by early disappointments. More recent synthetic polymer approaches have successfully replicated some aspects of natural underwater adhesives. For example, synthetic polymers, inspired by mussels, containing the catecholic functional group of 3,4-L-dihydroxyphenylalanine adhere strongly to wet metal oxide surfaces. Synthetic complex coacervates inspired by the Sandcastle worm are water-borne adhesives that can be delivered underwater without dispersing. Synthetic approaches offer several advantages, including versatile chemistries and scalable production. In the future, more sophisticated mimetic adhesives may combine synthetic copolymers with recombinant or agriculture-derived proteins to better replicate the structural and functional organization of natural adhesives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号