首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acoustic communication is an important behavior in frog courtship. Male and female frogs of most species, except the concave-eared torrent frog Odorrana tormota, have largely similar audiograms. The large odorous frogs (Odorrana graminea) are sympatric with O. tormota, but have no ear canals. The difference in hearing between two sexes of the frog is unknown. We recorded auditory evoked near-field potentials and single-unit responses from the auditory midbrain (the torus semicircularis) to determine auditory frequency sensitivity and threshold. The results show that males have the upper frequency limit at 24 kHz and females have the upper limit at 16 kHz. The more sensitive frequency range is 3–15 kHz for males and 1–8 kHz for females. Males have the minimum threshold at 11 kHz (58 dB SPL), higher about 5 dB than that at 3 kHz for females. The best excitatory frequencies of single units are mostly between 3 and 5 kHz in females and at 7–8 kHz in males. The underlying mechanism of auditory sexual differences is discussed.  相似文献   

2.
With increased polar anthropogenic activity, such as from the oil and gas industry, there are growing concerns about how Arctic species will be affected. Knowledge of species’ sensory abilities, such as auditory sensitivities, can be used to mitigate the effects of such activities. Herein, behavioral audiograms of two captive adult Arctic foxes (Vulpes lagopus) were measured using a yes/no paradigm and descending staircase method of signal presentation. Both foxes displayed a typical mammalian U-shaped audiometric curve, with a functional hearing range of 125 Hz–16 kHz (sensitivity ≤ 60 dB re: 20 μPa) and average peak sensitivity of 24 dB re: 20 μPa at 4 kHz. The foxes had a lower frequency range and sensitivity than would be expected when compared to previous audiograms of domestic dogs (Canis familiaris) and other carnivores. These differences indicate Arctic foxes (V. lagopus) may have a lower frequency range than previously expected, which was similar to the only other fox species tested to date, kit foxes (Vulpes macrotis). Alternatively, differences may be due to testing constraints, such as masking of test signals by ambient noise and/or an unintentionally trained conservative response bias, which most likely resulted in underestimated hearing curves. While results of this study should be interpreted with caution due to its limitations, findings indicate that foxes have a narrower frequency range than formerly presumed. Anthropogenic activities near fox habitats can mitigate their impacts by reducing noise at frequencies within the functional hearing range and peak sensitivities of this species.  相似文献   

3.
Settlement inhibition of barnacle (Amphibalanus amphitrite) cypris larvae resulting from exposure to ultrasound was measured at three frequencies (23, 63, and 102 kHz), applied at three acoustic pressure levels (9, 15, and 22 kPa) for exposure times of 30, 150, and 300 s. The lowest settlement was observed for 23 kHz, which also induced the highest cyprid mortality. Cyprid settlement following exposure to 23 kHz at 22 kPa for 30 s was reduced by a factor of two. Observing surface exploration by the cyprids revealed an altered behaviour following exposure to ultrasound: step length was increased, while step duration, walking pace, and the fraction of cyprids exploring the surface were significantly reduced with respect to control cyprids. The basal area of juvenile barnacles, metamorphosed from ultrasound-treated cyprids was initially smaller than unexposed individuals, but normalised over two weeks' growth. Thus, ultrasound exposure effectively reduced cyprid settlement, yet metamorphosed barnacles grew normally.  相似文献   

4.
We examined a recent notion that differences in echolocation call frequency amongst geographic groups of constant frequency (CF)-emitting bats is the result of a trade-off between maximising prey detection range at lower frequencies and enhancing small-prey resolution at higher frequencies in different atmospheric (relative humidity; RH) environments. Isolated populations of the endemic Australian orange leaf-nosed bat Rhinonicteris aurantia were used as an example since geographic isolation in different environments has been a precursor to differences in their characteristic echolocation call frequencies (mean difference c. 6 kHz; means of 114.64 and 120.99 kHz). The influence of both atmospheric temperature and RH on maximum prey detection range was explored through mathematical modelling. This revealed that temperature was of similar importance to relative humidity and that under certain circumstances, each could reduce the effect of the other on ultrasound attenuation rates. The newly developed models contain significant conceptual improvements in method compared to other recent approaches, and can be applied to the situation of any other species of bat. For a given set of atmospheric conditions, the prey detection range of R. aurantia was reduced slightly when call frequency increased by 6 kHz, but an increase in RH, temperature or both reduced detection range significantly. A similar trend was also evident in prey detection volume ratios calculated for the same conditions. Spatial volume ratios were applied to assess the impact of changed atmospheric conditions and prey size on foraging ecology. Reductions in detection range associated with increases in RH and/or temperature also varied in relation to the size (cross sectional area) of insect prey. Modelling demonstrated that small (6 kHz) movements in call frequency could not compensate for the changes in prey detection range and spatial detection volumes that result from significant changes in atmospheric temperature or RH. The notion that differences in RH are the primary cause leading to adaptive evolution and speciation in CF-emitting bats by precipitating intraspecific differences in the mean call frequency of geographically isolated bat populations was not supported by the results of this case study.  相似文献   

5.
Fast magic angle spinning (MAS) NMR spectroscopy is emerging as an essential analytical and structural biology technique. Large resolution and sensitivity enhancements observed under fast MAS conditions enable structural and dynamics analysis of challenging systems, such as large macromolecular assemblies and isotopically dilute samples, using only a fraction of material required for conventional experiments. Homonuclear dipolar-based correlation spectroscopy constitutes a centerpiece in the MAS NMR methodological toolbox, and is used essentially in every biological and organic system for deriving resonance assignments and distance restraints information necessary for structural analysis. Under fast MAS conditions (rotation frequencies above 35–40 kHz), dipolar-based techniques that yield multi-bond correlations and non-trivial distance information are ineffective and suffer from low polarization transfer efficiency. To overcome this limitation, we have developed a family of experiments, CORD–RFDR. These experiments exploit the advantages of both zero-quantum RFDR and spin-diffusion based CORD methods, and exhibit highly efficient and broadband dipolar recoupling across the entire spectrum, for both short-range and long-range correlations. We have verified the performance of the CORD–RFDR sequences experimentally on a U-13C,15N-MLF tripeptide and by numerical simulations. We demonstrate applications of 2D CORD–RFDR correlation spectroscopy in dynein light chain LC8 and HIV-1 CA tubular assemblies. In the CORD–RFDR spectra of LC8 acquired at the MAS frequency of 40 kHz, many new intra- and inter-residue correlations are detected, which were not observed with conventional dipolar recoupling sequences. At a moderate MAS frequency of 14 kHz, the CORD–RFDR experiment exhibits excellent performance as well, as demonstrated in the HIV-1 CA tubular assemblies. Taken together, the results indicate that CORD–RFDR experiment is beneficial in a broad range of conditions, including both high and moderate MAS frequencies and magnetic fields.  相似文献   

6.
It is generally thought that for species using vocal communication the spectral properties of the sender’s calls should match the frequency sensitivity of the receiver’s auditory system. Nevertheless, few studies have investigated both sender and receiver characteristics in anuran species. In the present study, auditory brainstem responses (ABRs) were recorded in the serrate legged treefrog, Philautus odontotarsus, in order to determine if male call spectral structure and hearing sensitivity in males and females have co-evolved in this species. The results showed that the spectral structures of male vocalization match both male and female hearing sensitivity, even though the dominant frequencies of male calls (2.5 kHz) are mismatched with the regions of best frequency sensitivity (1.4 and 2.8 kHz). In addition, the results show that, in contrast with most previous ABR studies in non-human animals, but consistent with human studies, there are noticeable sex differences in peripheral auditory sensitivity in Philautus insofar as females exhibit lower auditory thresholds than males across the entire 1.8–18 kHz frequency range. The results also show that the dominant frequency of male calls is negatively correlated with body size, indicating that call characteristics reflect body size in this species which may be used by females during mate choice.  相似文献   

7.
Our study estimates detection thresholds for tones of different durations and frequencies in Great Tits (Parus major) with operant procedures. We employ signals covering the duration and frequency range of communication signals of this species (40–1,010 ms; 2, 4, 6.3 kHz), and we measure threshold level-duration (TLD) function (relating threshold level to signal duration) in silence as well as under behaviorally relevant environmental noise conditions (urban noise, woodland noise). Detection thresholds decreased with increasing signal duration. Thresholds at any given duration were a function of signal frequency and were elevated in background noise, but the shape of Great Tit TLD functions was independent of signal frequency and background condition. To enable comparisons of our Great Tit data to those from other species, TLD functions were first fitted with a traditional leaky-integrator model. We then applied a probabilistic model to interpret the trade-off between signal amplitude and duration at threshold. Great Tit TLD functions exhibit features that are similar across species. The current results, however, cannot explain why Great Tits in noisy urban environments produce shorter song elements or faster songs than those in quieter woodland environments, as detection thresholds are lower for longer elements also under noisy conditions.  相似文献   

8.
Global and single unit responses of the superior olivary complex were investigated during ultrasonic stimulation at different frequencies in two species of bats from the Vespertilionidae, which emit frequency-modulated signals and the Rhinolophidae, which utilize almost monochromatic (80 ± 1 kHz) echolocation cries. Maximal sensitivity to ultrasound in the Vespertilionidae was found at frequencies of 10–40 kHz, and in the Rhinolophidae also within the range 10–40 kHz but with a second increase in sensitivity in the region 82–86 kHz. Sharply tuned neurons were more numerous in the Rhinolophidae than in the Vespertilionidae. Neurons whose response in the echolocation frequency band changed in character depending on the fill frequency of the stimulus were found in Rhinolophidae: a phasic discharge occurs over a wide range of frequencies and a tonic discharge at the characteristic frequency; the latter was also observed over a limited range of intensities.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 33–39, January–February, 1973.  相似文献   

9.

Background

Matching the frequency of the driving force to that of the system’s natural frequency of vibration results in greater amplitude response. Thus we hypothesize that applying ultrasound at the chondrocyte’s resonant frequency will result in greater deformation than applying similar ultrasound power at a frequency outside of the resonant bandwidth. Based on this resonant hypothesis, our group previously confirmed theoretically and experimentally that ultrasound stimulation of suspended chondrocytes at resonance (5 MHz) maximized gene expression of load inducible genes. However, this study was based on suspended chondrocytes. The resonant frequency of a chondrocyte does not only depend on the cell mass and intracellular stiffness, but also on the mechanical properties of the surrounding medium. An in vivo chondrocyte’s environment differs whether it be a blood clot (following microfracture), a hydrogel or the pericellular and extracellular matrices of the natural cartilage. All have distinct structures and compositions leading to different resonant frequencies. In this study, we present two theoretical models, the first model to understand the effects of the resonant frequency on the cellular deformation and the second to identify the optimal frequency range for clinical applications of ultrasound to enhance cartilage restoration.

Results

We showed that applying low-intensity ultrasound at the resonant frequency induced deformation equivalent to that experimentally calculated in previous studies at higher intensities and a 1 MHz frequency. Additionally, the resonant frequency of an in vivo chondrocyte in healthy conditions, osteoarthritic conditions, embedded in a blood clot and embedded in fibrin ranges from 3.5???4.8 MHz.

Conclusion

The main finding of this study is the theoretically proposed optimal frequency for clinical applications of therapeutic ultrasound induced cartilage restoration is 3.5???4.8 MHz (the resonant frequencies of in vivo chondrocytes). Application of ultrasound in this frequency range will maximize desired bioeffects.
  相似文献   

10.
Induction of antioxidant systems of hazel cells by low-energy ultrasound, the potential role of hydrogen peroxide (H2O2) as a signaling molecule in regulation of activity of stress-related enzymes, and expression of catalase (CAT) and phenylalanine ammonialyase (PAL) genes were investigated. Suspension-cultured Corylus avellana L. cells were agitated by an ultrasonic device at 29 kHz with the power of 4 mW/cm2, for 8–40 min. The activities of CAT, superoxide dismutase (SOD), and ascorbate peroxidase (APX) of treated cells increased by 4, 1.7 and 7 times of the control ones, respectively. Induction of increase in the expression of CAT gene started 24 h after the treatment with ultrasound. Significant increase also was observed in the expression of PAL gene, 6 h after exposure to ultrasound, which resulted in turn to increase of total contents of soluble phenolics, 24 h of the treatment. Exposure to ultrasound up to 20 min had no adverse effects on cell viability although it slightly increased the accumulation of H2O2. However, it is likely that this level of increased H2O2 was not deteriorative for hazel cells, but rather triggered antioxidant system and provided hazel cells a sustainable growth after ultrasound treatment.  相似文献   

11.
Long-range spatial correlations in the turbulent plasma of the L-2M stellarator were revealed experimentally, and their relation to the geometry of magnetic surfaces was analyzed (Plasma Phys. Control. Fusion 50, 045001 (2008)). The operation modes of the facility in which fast transport transitions in plasma are possible were studied. Upon these transitions, the turbulence level is found to decrease substantially. It is shown that long-range spatial correlations are typical of relatively narrow frequency ranges. In particular, before a transport transition, such frequency ranges are f ~ 30–40 kHz and f ~ 1–3 kHz. After the transition, long-range spatial correlations in the frequency range of f ~ 30–40 kHz disappear due to a significant decrease in the turbulence level in this frequency range. At the same time, correlations in the low frequency range are retained and new correlations at frequencies of f ~ 6-12 kHz occur. It is found that global electromagnetic oscillations in the frequency range of f ~ 1–3 kHz are related to the m/n = 0/0 perturbation and its toroidal satellites (here, m and n are the poloidal and toroidal mode numbers, respectively). It is also shown that, after the transport transition, a three-dimensional localized electromagnetic mode at the frequency of the geodesic acoustic mode governed by the average magnetic field curvature is excited. At higher frequencies typical of a geodesic acoustic mode related to the three-dimensional curvature of the magnetic field, no long-range spatial correlations were observed both before and after the transport transition.  相似文献   

12.
The pure-tone thresholds of four domestic female chickens were determined from 2 Hz to 9 kHz using the method of conditioned suppression/avoidance. At a level of 60 dB sound pressure level (re 20 μN/m2), their hearing range extends from 9.1 Hz to 7.2 kHz, with a best sensitivity of 2.6 dB at 2 kHz. Chickens have better sensitivity than humans for frequencies below 64 Hz; indeed, their sensitivity to infrasound exceeds that of the homing pigeon. However, when threshold testing moved to the lower frequencies, the animals required additional training before their final thresholds were obtained, suggesting that they may perceive frequencies below 64 Hz differently than higher frequencies.  相似文献   

13.
In katydids (Orthoptera: Tettigonioidea) of the subfamily Phaneropterinae females ready to mate initiate a duet, announcing her position to the male singer, but also potentially to eavesdropping rivals. In many species the male seems to defend the communication by adding self-produced imitations of a female response. If these signals occur within the male sensory time-window after the female song, they can disturb the orientation of rivals. In two species of the genus Gonatoxia, males and females use short, relatively narrow-banded sounds (width 2–7 kHz 10 dB below peak). Male song and female response, however, differ considerably in peak frequency. In G. maculata, the peak frequency of the last part of the male song (13 kHz) is between that of the first part (15 kHz) and the female response (9 kHz), in G. helleri the last part (9 kHz; assumed imitation) and the female song are identical in peak frequency and by a factor two lower than the first part (19 kHz). The male stridulatory file of this species is correspondingly modified and differs from all other members of the genus. The imitation of spectral properties of the female response is not known from any other katydid.  相似文献   

14.
Low-frequency (LF) ultrasound (20-100 kHz) has a diverse set of industrial and medical applications. In fact, high power industrial applications of ultrasound mainly occupy this frequency range. This range is also used for various therapeutic medical applications including sonophoresis (ultrasonic transdermal drug delivery), dentistry, eye surgery, body contouring, the breaking of kidney stones and eliminating blood clots. While emerging LF applications such as ultrasonic drug delivery continue to be developed and undergo translation for human use, significant gaps exist in the coverage of safety standards for this frequency range. Accordingly, the need to understand the biological effects of LF ultrasound is becoming more important. This paper presents a broad overview of bio-effects and safety of LF ultrasound as an aid to minimize and control the risk of these effects. Its particular focus is at low intensities where bio-effects are initially observed. To generate a clear perspective of hazards in LF exposure, the mechanisms of bio-effects and the main differences in action at low and high frequencies are investigated and a survey of harmful effects of LF ultrasound at low intensities is presented. Mechanical and thermal indices are widely used in high frequency diagnostic applications as a means of indicating safety of ultrasonic exposure. The direct application of these indices at low frequencies needs careful investigation. In this work, using numerical simulations based on the mathematical and physical rationale behind the indices at high frequencies, it is observed that while thermal index (TI) can be used directly in the LF range, mechanical index (MI) seems to become less reliable at lower frequencies. Accordingly, an improved formulation for the MI is proposed for frequencies below 500 kHz.  相似文献   

15.
In this study we examine the auditory capabilities of the sea otter (Enhydra lutris), an amphibious marine mammal that remains virtually unstudied with respect to its sensory biology. We trained an adult male sea otter to perform a psychophysical task in an acoustic chamber and at an underwater apparatus. Aerial and underwater audiograms were constructed from detection thresholds for narrowband signals measured in quiet conditions at frequencies from 0.125–40 kHz. Aerial hearing thresholds were also measured in the presence of octave-band masking noise centered at eight signal frequencies (0.25–22.6 kHz) so that critical ratios could be determined. The aerial audiogram of the sea otter resembled that of sea lions and showed a reduction in low-frequency sensitivity relative to terrestrial mustelids. Best sensitivity was ?1 dB re 20 µPa at 8 kHz. Under water, hearing sensitivity was significantly reduced when compared to sea lions and other pinniped species, demonstrating that sea otter hearing is primarily adapted to receive airborne sounds. Critical ratios were more than 10 dB higher than those measured for pinnipeds, suggesting that sea otters are less efficient than other marine carnivores at extracting acoustic signals from background noise, especially at frequencies below 2 kHz.  相似文献   

16.
Small songbirds have a difficult analysis problem: their head is small compared to the wavelengths of sounds used for communication providing only small interaural time and level differences. Klump and Larsen (1992) measured the physical binaural cues in the European starling (Sturnus vulgaris) that allow the comparison of acoustical cues and perception. We determined the starling’s minimum audible angle (MAA) in an operant Go/NoGo procedure for different spectral and temporal stimulus conditions. The MAA for broadband noise with closed-loop localization reached 17°, while the starling’s MAA for open-loop localization of broadband noise reached 29°. No substantial difference between open-loop and closed-loop localization was found in 2 kHz pure tones. The closed-loop MAA improved from 26° to 19° with an increase in pure tone frequency from 1 to 4 kHz. This finding is in line with the physical cues available. While the starlings can only make use of interaural time difference cues at lower frequencies (e.g., 1 and 2 kHz), additional interaural level difference cues become available at higher frequencies (e.g., 4 kHz or higher, Klump and Larsen 1992). An improvement of the starling’s MAA with an increasing number of standard stimulus presentations prior to the test stimulus has important implications for determining relative (MAA) localization thresholds.  相似文献   

17.
Although spiny rock lobster (Jasus edwardsii) is a wholly sub-littoral species, they show a considerable ability to survive prolonged emersion, a fact exploited during the commercial export of this species. Yet, despite this remarkable hardiness, basic information on how this species responds physiologically to emersion is somewhat lacking. Using flow-through respirometry and electrophysiological techniques, we identified that J. edwardsii undergoes marked physiological changes during rest, emersion and recovery over a broad range of temperatures (3.7–17.8 °C). Under resting conditions, routine metabolic rates (RMR) were 22.57 ± 2.39, 9.69 ± 0.55 and 8.09 ± 0.27 mL O2 h?1, average heart rates (Hr) were 54.72 ± 4.46, 37.68 ± 2.86 and 29.67 ± 0.59 BPM, and ventilation frequencies were 83.71 ± 5.86, 45.34 ± 2.91 and 41.62 ± 0.65 BPM at 15.0, 7.5 and 3.7 °C, respectively. Notably, the surgical implantation of electrodes elevated RMR compared with non-surgical treatments. In surgery and non-surgery groups, Q 10 was calculated to be ca. 3.0. Upon emersion, rate of oxygen consumption and Hr decreased below resting rates in a temperature-dependent manner, but, along with rate of CO2 production, increased steadily during 24-h emersion. Ventilation frequencies upon emersion showed a contrasting response and increased significantly above resting rates. When returned to flow-through sea water for recovery, elevated respiration rates provided clear evidence of an O2 debt, and near-complete recovery was observed after 17 h at both 15.0 and 7.5 °C, but close to no debt was recovered at 3.7 °C. In addition, J. edwardsii was observed to undergo marked diurnal and periodic ventilation cycles, characterised by synchronous changes in RMR, Hr and ventilation frequency.  相似文献   

18.
Lifestyle including smoking, noise exposure with MP3 player and drinking alcohol are considered as risk factors for affecting hearing synergistically. However, little is known about the association of cigarette smoking with hearing impairment among subjects who carry a lifestyle without using MP3 player and drinking alcohol. We showed here the influence of smoking on hearing among Bangladeshi subjects who maintain a lifestyle devoid of using MP3 player and drinking alcohol. A total of 184 subjects (smokers: 90; non-smokers: 94) were included considering their duration and frequency of smoking for conducting this study. The mean hearing thresholds of non-smoker subjects at 1, 4, 8 and 12 kHz frequencies were 5.63±2.10, 8.56±5.75, 21.06±11.06, 40.79±20.36 decibel (dB), respectively and that of the smokers were 7±3.8, 13.27±8.4, 30.66±12.50 and 56.88±21.58 dB, respectively. The hearing thresholds of the smokers at 4, 8 and 12 kHz frequencies were significantly (p<0.05) higher than those of the non-smokers, while no significant differences were observed at 1 kHz frequency. We also observed no significant difference in auditory thresholds among smoker subgroups based on smoking frequency. In contrast, subjects smoked for longer duration (>5 years) showed higher level of auditory threshold (62.16±19.87 dB) at 12 kHz frequency compared with that (41.52±19.21 dB) of the subjects smoked for 1-5 years and the difference in auditory thresholds was statistically significant (p<0.0002). In this study, the Brinkman Index (BI) of smokers was from 6 to 440 and the adjusted odds ratio showed a positive correlation between hearing loss and smoking when adjusted for age and body mass index (BMI). In addition, age, but not BMI, also played positive role on hearing impairment at all frequencies. Thus, these findings suggested that cigarette smoking affects hearing level at all the frequencies tested but most significantly at extra higher frequencies.  相似文献   

19.
Drug delivery in the brain is limited by slow drug diffusion in the brain tissue. This study tested the hypothesis that ultrasound can safely enhance the permeation of drugs in the brain. In vitro exposure to ultrasound at various frequencies (85 kHz, 174 kHz, and 1 MHz) enhanced the permeation of tritium-labeled molecules with molecular weight up to 70 kDa across porcine brain tissue. A maximum enhancement of 24-fold was observed at 85 kHz and 1,200 J/cm2. In vivo exposure to 1-MHz ultrasound further demonstrated the ability of ultrasound to facilitate molecule distribution in the brain of a non-human primate. Finally, ultrasound under conditions similar to those used in vivo was shown to cause no damage to plasmid DNA, siRNA, adeno-associated virus, and fetal rat cortical neurons over a range of conditions. Altogether, these studies demonstrate that ultrasound can increase drug permeation in the brain in vitro and in vivo under conditions that did not cause detectable damage.  相似文献   

20.
A previously reported Agrobacterium tumefaciens transformation system that transformed wheat cultivar Fielder at high efficiency was shown to also transform eight out of nine Triticum aestivum (hexaploid wheat) cultivars tested and two Triticum turgidum (durum wheat) cultivars. Transformation efficiencies of these wheat lines ranged from 1.5 to 51 %. Included amongst this germplasm were elite Australian hexaploid wheat cultivars that are currently in commercial cultivation and two of these cultivars, Gladius and Westonia, were transformed at 32 and 45 % efficiency, respectively. Similar high transformation efficiencies were observed for durum wheat cultivars Kronos (51 %) and Stewart (26 %). This highly efficient transformation system was used to generate transgenic plants in the absence of selection and high heritability of unselected transgenes was observed. Selectable marker free transgenic wheat plants were produced at 3 % efficiency. These data demonstrate highly efficient Agrobacterium transformation of diverse wheat germplasm, including elite cultivars, which enables routine production of selectable marker free transgenics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号