首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secretion of the cytokine interleukin-2 (IL-2) was investigated in Lactococcus lactis using the secretory machinery of the bacteriocin lactococcin A. Surprisingly, the lcnCD transport genes were not essential for mouse IL-2 secretion. Furthermore, expression of a mature mouse IL-2 gene resulted in interleukin secretion without the requirement for a leader sequence.  相似文献   

2.
Diabetes mellitus type 1 (DM1) is an autoimmune disease that gradually destroys insulin-producing beta-cells. We have previously reported that mucosal administration of fusion protein of HSP65 with tandem repeats of P277 (HSP65-6P277) can reduce the onset of DM1 in non-obese diabetic (NOD) mice. To deliver large amounts of the fusion protein and to enhance long-term immune tolerance effects, in the present study, we investigated the efficacy of using orally administrated L. lactis expressing HSP65-6P277 to reduce the incidence of DM1 in NOD mice. L. lactis strain NZ9000 was engineered to express HSP65-6P277 either constitutively or by nisin induction. After immunization via gavage with the recombinant L. lactis strains to groups of 4-week old female NOD mice for 36 weeks, we observed that oral administration of recombinant L. Lactis resulted in the prevention of hyperglycemia, improved glucose tolerance and reduced insulitis. Immunologic analysis showed that treatment with recombinant L. lactis induced HSP65- and P277- specific T cell immuno-tolerance, as well as antigen-specific proliferation of splenocytes. The results revealed that the DM1-preventing function was in part caused by a reduction in the pro-inflammatory cytokine IFN-γ and an increase in the anti-inflammatory cytokine IL-10. Orally administered recombinant L. lactis delivering HSP65-6P277 may be an effective therapeutic approach in preventing DM1.  相似文献   

3.
Interleukin-22 (IL-22) is a class 2 cytokine whose primary structure is similar to that of interleukin 10 (IL-10) and interferon-γ (IFN-γ). IL-22 induction during acute phase immune response indicates its involvement in mechanisms of inflammation. Structurally different from IL-10 and a number of other members of IL-10 family, which form intertwined inseparable V-shaped dimers of two identical polypeptide chains, a single polypeptide chain of IL-22 folds on itself in a relatively globular structure. Here we present evidence, based on native gel electrophoresis, glutaraldehyde cross-linking, dynamic light scattering, and small angle x-ray scattering experiments, that human IL-22 forms dimers and tetramers in solution under protein concentrations assessable by these experiments. Unexpectedly, low-resolution molecular shape of IL-22 dimers is strikingly similar to that of IL-10 and other intertwined cytokine dimeric forms. Furthermore, we determine an ab initio molecular shape of the IL-22/IL-22R1 complex which reveals the V-shaped IL-22 dimer interacting with two cognate IL-22R1 molecules. Based on this collective evidence, we argue that dimerization might be a common mechanism of all class 2 cytokines for the molecular recognition with their respective membrane receptor. We also speculate that the IL-22 tetramer formation could represent a way to store the cytokine in nonactive form at high concentrations that could be readily converted into functionally active monomers and dimers upon interaction with the cognate cellular receptors.  相似文献   

4.
Interleukin-10 (IL-10) is a promising candidate for the treatment of inflammatory bowel disease. Intragastric administration of Lactococcus lactis genetically modified to secrete IL-10 in situ in the intestine was shown to be effective in healing and preventing chronic colitis in mice. However, its use in humans is hindered by the sensitivity of L. lactis to freeze-drying and its poor survival in the gastrointestinal tract. We expressed the trehalose synthesizing genes from Escherichia coli under control of the nisin-inducible promoter in L. lactis. Induced cells accumulated intracellular trehalose and retained nearly 100% viability after freeze-drying, together with a markedly prolonged shelf life. Remarkably, cells producing trehalose were resistant to bile, and their viability in human gastric juice was enhanced. None of these effects were seen with exogenously added trehalose. Trehalose accumulation did not interfere with IL-10 secretion or with therapeutic efficacy in murine colitis. The newly acquired properties should enable a larger proportion of the administered bacteria to reach the gastrointestinal tract in a bioactive form, providing a means for more effective mucosal delivery of therapeutics.  相似文献   

5.
Type 2 immune responses are essential in protection against intestinal helminth infections. In this study we show that IL-22, a cytokine important in defence against bacterial infections in the intestinal tract, is also a critical mediator of anti-helminth immunity. After infection with Nippostrongylus brasiliensis, a rodent hookworm, IL-22-deficient mice showed impaired worm expulsion despite normal levels of type 2 cytokine production. The impaired worm expulsion correlated with reduced goblet cell hyperplasia and reduced expression of goblet cell markers. We further confirmed our findings in a second nematode model, the murine whipworm Trichuris muris. T.muris infected IL-22-deficient mice had a similar phenotype to that seen in N.brasiliensis infection, with impaired worm expulsion and reduced goblet cell hyperplasia. Ex vivo and in vitro analysis demonstrated that IL-22 is able to directly induce the expression of several goblet cell markers, including mucins. Taken together, our findings reveal that IL-22 plays an important role in goblet cell activation, and thus, a key role in anti-helminth immunity.  相似文献   

6.
The novel signal peptide SLPmod was used for the secretion of murine interleukin-12 (mIL-12) by Lactococcus lactis. A >4-fold increase in secretion was observed when SLPmod was used instead of the Usp45-derived secretion signal. Oral delivery of this cytokine using the autoinducible host L. lactis FI5876 utilizing SLPmod resulted in a significant increase in mIL-12 plasma levels in mice.  相似文献   

7.

Background

In recent years, the fungal infectious disease zygomycosis has increased in incidence worldwide, especially among the immunodeficient population. Despite the rates of zygomycosis-related death and deformation being very high, the mechanism(s) by which the fungal pathogens cause these severe manifestations remain unknown.

Methods

Using the associated Rhizomucor variabilis species, which can selectively induce cutaneous zygomycosis in otherwise healthy individuals, we investigated the host mechanisms of infection-related responses, including cytokine and chemokine expression as well as contributions of particular T cell subsets. siRNA specifically targeting IL-22,IL-17 and IFN-γ were used to down-regulate expression of those molecules.

Results

In mouse models of infection, IL-22 was implicated in development of Rhizomucor spp.-induced skin lesions. In cultured human peripheral blood monocytes, R. pusilluscan, which is often found in immunodeficient patients, induced the production of IL-22, while R. variabilis did not. Moreover, Rhizomucor spp.-induced secretion of Il-22 from CCR6+CCR4+CCR10+ cells was down-regulated by knockdown of IL-22 related signaling receptors, RORC and ARH.

Conclusion

Our data strongly suggest that avoidance of IL-22 may be one mechanism by which mucor species produce morbidity and mortality in infected individuals.  相似文献   

8.

Introduction

Interleukin-22 (IL-22) is a cytokine of IL-10 family with significant proliferative effect on different cell lines. Immunopathological role of IL-22 has been studied in rheumatoid arthritis (RA) and psoriasis. Here we are reporting the functional role of IL-22 in the inflammatory and proliferative cascades of psoriatic arthritis (PsA).

Method

From peripheral blood and synovial fluid (SF) of PsA (n = 15), RA (n = 15) and osteoarthritis (OA, n = 15) patients, mononuclear cells were obtained and magnetically sorted for CD3+ T cells. Fibroblast like synoviocytes (FLS) were isolated from the synovial tissue of PsA (n = 5), RA (n = 5) and OA (n = 5) patients. IL-22 levels in SF and serum were measured by enzyme linked immunosorbent assay (ELISA). Proliferative effect of human recombinant IL-22 (rIL-22) on FLS was assessed by MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole) and CFSE dilution (Carboxyfluorescein succinimidyl ester) assays. Expression of IL-22Rα1 in FLS was determined by western blot.

Results

IL-22 levels were significantly elevated in SF of PsA patients (17.75 ± 3.46 pg/ml) compared to SF of OA (5.03 ± 0.39 pg/ml), p < 0.001. In MTT and CFSE dilution assays, rIL-22 (MTT, OD: 1.27 ± 0.06) induced significant proliferation of FLS derived from PsA patients compared to media (OD: 0.53 ± 0.02), p < 0.001. In addition, rIL-22 induced significantly more proliferation of FLS in presence of TNF-α. IL-22Rα1 was expressed in FLS of PsA, RA and OA patients. Anti IL-22R antibody significantly inhibited the proliferative effect of rIL-22. Further we demonstrated that activated synovial T cells of PsA and RA patients produced significantly more IL-22 than those of OA patients.

Conclusion

SF of PsA patients have higher concentration of IL-22 and rIL-22 induced marked proliferation of PsA derived FLS. Moreover combination of rIL-22 and TNF-α showed significantly more proliferative effect on FLS. IL-22Rα1 was expressed in FLS. Successful inhibition of IL-22 induced FLS proliferation by anti IL-22R antibody suggests that blocking of IL-22/IL-22R interaction may be considered as a novel therapeutic target for PsA.  相似文献   

9.
The role of interleukin-22 (IL-22) in intracellular bacterial infections is a controversial issue, although the contribution of this cytokine to host defense against extracellular bacterial pathogens has been well established. In this study, we focused on an intra-cellular bacterium, Chlamydia, and evaluated the production and function of IL-22 in host defense against chlamydial lung infection using a mouse model. We found that Chlamydia muridarum infection elicited quick IL-22 responses in the lung, which increased during infection and were reduced when bacterial loads decreased. More importantly, blockade of endogenous IL-22 using neutralizing anti-IL-22 monoclonal antibodies (mAb) resulted in more severe disease in the mice, leading to significantly higher weight loss and bacterial growth and much more severe pathological changes than treatment with isotype control antibody. Immunological analyses identified significantly lower T helper 1 (Th1) and Th17 responses in the IL-22–neutralized mice. In contrast, intranasal administration of exogenous IL-22 significantly enhanced protection following chlamydial lung infection, which was associated with a significant increase of Th17 response. The data demonstrate that IL-22 is a critical cytokine, mediating host defense against chlamydial lung infection and coordinating the function of distinct Th-cell subsets, particularly Th1 and Th17, in the process.  相似文献   

10.
Uropathogenic Escherichia coli (UPEC) strains live as commensals in the digestive tract of the host, but they can also initiate urinary tract infections. The aim of this work was to determine how a host detects the presence of a new UPEC strain in the digestive tract. Mice were orally challenged with UPEC strains 536 and CFT073, non-pathogenic strain K12 MG1655, and ΔPAI-536, an isogenic mutant of strain 536 lacking all 7 pathogenicity islands whose virulence is drastically attenuated. Intestinal colonization was measured, and cytokine expression was determined in various organs recovered from mice after oral challenge. UPEC strain 536 efficiently colonized the mouse digestive tract, and prior Enterobacteriaceae colonization was found to impact strain 536 colonization efficiency. An innate immune response, detected as the production of TNFα, IL-6 and IL-10 cytokines, was activated in the ileum 48 hours after oral challenge with strain 536, and returned to baseline within 8 days, without a drop in fecal pathogen load. Although inflammation was detected in the ileum, histology was normal at the time of cytokine peak. Comparison of cytokine secretion 48h after oral gavage with E. coli strain 536, CFT073, MG1655 or ΔPAI-536 showed that inflammation was more pronounced with UPECs than with non-pathogenic or attenuated strains. Pathogenicity islands also seemed to be involved in host detection, as IL-6 intestinal secretion was increased after administration of E. coli strain 536, but not after administration of ΔPAI-536. In conclusion, UPEC colonization of the mouse digestive tract activates acute phase inflammatory cytokine secretion but does not trigger any pathological changes, illustrating the opportunistic nature of UPECs. This digestive tract colonization model will be useful for studying the factors controlling the switch from commensalism to pathogenicity.  相似文献   

11.
Interleukin (IL)-22, an immune cell-derived cytokine whose receptor expression is restricted to non-immune cells (e.g. epithelial cells), can be anti-inflammatory and pro-inflammatory. Mice infected with the tapeworm Hymenolepis diminuta are protected from dinitrobenzene sulphonic acid (DNBS)-induced colitis. Here we assessed expulsion of H. diminuta, the concomitant immune response and the outcome of DNBS-induced colitis in wild-type (WT) and IL-22 deficient mice (IL-22-/-) ± infection. Interleukin-22-/- mice had a mildly impaired ability to expel the worm and this correlated with reduced or delayed induction of TH2 immunity as measured by splenic and mesenteric lymph node production of IL-4, IL-5 and IL-13 and intestinal Muc-2 mRNA and goblet cell hyperplasia; in contrast, IL-25 increased in the small intestine of IL-22-/- mice 8 and 12 days post-infection compared to WT mice. In vitro experiments revealed that H. diminuta directly evoked epithelial production of IL-25 that was inhibited by recombinant IL-22. Also, IL-10 and markers of regulatory T cells were increased in IL-22-/- mice that displayed less DNBS (3 mg, ir. 72h)-induced colitis. Wild-type mice infected with H. diminuta were protected from colitis, as were infected IL-22-/- mice and the latter to a degree that they were almost indistinguishable from control, non-DNBS treated mice. Finally, treatment with anti-IL-25 antibodies exaggerated DNBS-induced colitis in IL-22-/- mice and blocked the anti-colitic effect of infection with H. diminuta. Thus, IL-22 is identified as an endogenous brake on helminth-elicited TH2 immunity, reducing the efficacy of expulsion of H. diminuta and limiting the effectiveness of the anti-colitic events mobilized following infection with H. diminuta in a non-permissive host.  相似文献   

12.
Signaling through the interleukin (IL)-22 cytokine axis provides essential immune protection in the setting of extracellular infection as part of type 17 immunity. Molecular regulation of IL-22 receptor (IL-22R) protein levels is unknown. In murine lung epithelia, IL-22R is a relatively short-lived protein (t½ ∼1.5 h) degraded by the ubiquitin proteasome under normal unstimulated conditions, but its degradation is accelerated by IL-22 treatment. Lys449 within the intracellular C-terminal domain of the IL-22R serves as a ubiquitin acceptor site as disruption of this site by deletion or site-directed mutagenesis creates an IL-22R variant that, when expressed in cells, is degradation-resistant and not ubiquitinated. Glycogen synthase kinase (GSK)-3β phosphorylates the IL-22R within a consensus phosphorylation signature at Ser410 and Ser414, and IL-22 treatment of cells triggers GSK-3β inactivation. GSK-3β overexpression results in accumulation of IL-22R protein, whereas GSK-3β depletion in cells reduces levels of the receptor. Mutagenesis of IL-22R at Ser410 and Ser414 results in receptor variants that display reduced phosphorylation levels and are more labile as compared with wild-type IL-22R when expressed in cells. Further, the cytoskeletal protein cortactin, which is important for epithelial spreading and barrier formation, is phosphorylated and activated at the epithelial cell leading edge after treatment with IL-22, but this effect is reduced after GSK-3β knockdown. These findings reveal the ability of GSK-3β to modulate IL-22R protein stability that might have significant implications for cytoprotective functions and therapeutic targeting of the IL-22 signaling axis.  相似文献   

13.
We set out to test the hypothesis that interleukin-22 (IL-22), a cytokine crucial for epithelial cell homeostasis and recovery from tissue injury, would be protective during influenza virus infection. Recent studies have identified phenotypically and functionally unique intestinal NK cells capable of producing the cytokine IL-22. Unlike gut NK cells that produce IL-22, the surface phenotypes of lung NK cells were similar to those of spleen NK cells and were characteristically mature. With mitogen stimulation, both single and double IL-22- and gamma interferon (IFN-γ)-producing lung NK cells were detected. However, only the IL-22+ IFN-γ lung NK subset was observed after stimulation with IL-23. IL-23 receptor (IL-23R) blocking dramatically inhibited IL-22 production, but not IFN-γ production. Furthermore, we found that NK1.1+ or CD27 lung NK cells were the primary sources of IL-22. After influenza virus infection, lung NK cells were quickly activated to produce both IFN-γ and IL-22 and had increased cytotoxic potential. The level of IL-22 in the lung tissue declined shortly after infection, gradually returning to the baseline after virus clearance, although the IL-22 gene expression was maintained. Furthermore, depletion of NK cells with or without influenza virus infection reduced the protein level of IL-22 in the lung. Anti-IL-22 neutralization in vivo did not dramatically affect weight loss and survival after virus clearance. Unexpectedly, anti-IL-22-treated mice had reduced virus titers. Our data suggest that during primary respiratory viral infection, IL-22 seems to a play a marginal role for protection, indicating a differential requirement of this cytokine for bacterial and viral infections.NK cells are important innate immune effectors that patrol the body for invading pathogens and tumors. Primary biological functions of NK cells include natural cytotoxicity and cytokine generation, through which NK cells directly or indirectly control infections and tumors and regulate the immune system (8). Accumulating evidence has unveiled other novel functions of NK cells that are associated with their anatomic locations. For example, in the uterus, NK cells support reproductive tissue development by providing a variety of cytokines, growth factors, and angiogenic factors (18, 26). The uterine NK cells also demonstrate a unique receptor repertoire, the Ly49 phenotype of which is strikingly different from that of spleen NK cells (39).Very recently, an NK1.1 low or negative subset of NK cells (CD3 NKp46+) has been identified in the intestinal mucosa and found to be capable of making interleukin-22 (IL-22) (7, 24, 31, 32). IL-22 is one of the IL-10 cytokine family members that have been shown to be important in regulating mucosal epithelial cell function, maintaining barrier integrity, and protection from bacterial infections in the gut and lung (4, 43). Interestingly, gut NK cells are distinguished by an immature phenotype, as evidenced by the lack of multiple traditional NK cell markers, such as Ly49A, Ly49D, Ly49C/I, and Ly49G2, and by altered expression of several markers, such as CD122, NK1.1, CD49b (DX5), CD11b, CD27, and CD127, in comparison with spleen NK cells (24, 31, 32). Functionally, gut NK cells lack the capability of gamma interferon (IFN-γ) production and cytotoxicity (24, 31, 32). Taken together, the unique nontraditional features of gut NK cells indicate a distinct developmental process (11, 36) in which they acquire the ability to produce IL-22 and thus are crucial components against intestinal bacterial infections.In addition to the gut, the respiratory tract is an important mucosal system that can be easily invaded by microorganisms. In the lung, NK cells constitute about 10% of the total resident lymphocytes, a relatively higher percentage than that distributed in most other lymphoid tissues and nonlymphoid tissues (17), indicating potential crucial involvement of NK cells in lung infections. Indeed, lung NK cells are known to be vital for containing numerous pulmonary infections, including those caused by Mycobacterium tuberculosis, Cryptococcus neoformans, Bordetella pertussis, respiratory syncytial virus, and influenza virus (12, 16). The potential mechanism of NK cell defense in lung infections has been attributed to NK cell IFN-γ production and their cytolytic functions. However, IL-22 has been implicated in protection against respiratory infection with Gram-negative bacteria, such as Klebsiella pneumoniae, where IL-22 levels increase after infection (4). Whether lung NK cell production of IL-22 in the context of respiratory virus infection or IL-22 itself is important for viral protection has not been investigated.In this study, we investigated the phenotypes and IL-22 production potential of lung NK cells in the context of influenza virus infection. The data show that lung NK cells are phenotypically similar to spleen NK cells yet capable of producing IL-22 upon in vitro stimulation and after influenza virus infection in vivo. Unlike gut NK cells, IL-22-producing lung NK cells are capable of making IFN-γ and display cytolytic potential. After influenza virus infection, in spite of the detection of IL-22-producing NK cells in the lung, IL-22 levels actually went down, and mice treated with anti-IL-22 antibodies had reduced virus titers, with little change in disease severity. These observations show that IL-22 serves different roles in bacterial versus virus infections of the lung and suggest that it may be actively regulated to limit proliferation of cells targeted by the influenza virus.  相似文献   

14.
Accumulating evidence suggests a contribution of T cell-derived IL-17, IL-21 and IL-22 cytokines in skin immune homeostasis as well as inflammatory disorders. Here, we analyzed whether the cytokine-producing T lymphocytes could be induced by the different subsets of human skin dendritic cells (DCs), i.e., epidermal Langerhans cells (LCs), dermal CD1c+CD14 and CD14+ DCs (DDCs). DCs were purified following a 2-day migration from separated epidermal and dermal sheets and co-cultured with allogeneic T cells before cytokine secretion was explored. Results showed that no skin DCs could induce substantial IL-17 production by naïve CD4+ or CD8+T lymphocytes whereas all of them could induce IL-17 production by memory T cells. In contrast, LCs and CD1c+CD14DDCs were able to differentiate naïve CD4+T lymphocytes into IL-22 and IL-21-secreting cells, LCs being the most efficient in this process. Intracellular cytokine staining showed that the majority of IL-21 or IL-22 secreting CD4+T lymphocytes did not co-synthesized IFN-γ, IL-4 or IL-17. IL-21 and IL-22 production were dependent on the B7/CD28 co-stimulatory pathway and ICOS-L expression on skin LCs significantly reduced IL-21 level. Finally, we found that TGF-β strongly down-regulates both IL-21 and IL-22 secretion by allogeneic CD4+ T cells. These results add new knowledge on the functional specialization of human skin DCs and might suggest new targets in the treatment of inflammatory skin disorders.  相似文献   

15.
Phthalates are a group of endocrine disrupting chemicals, suspected to influence the immune system. The aim of this study was to investigate the influence of phthalates on cytokine secretion from human peripheral blood mononuclear cells. Escherichia coli lipopolysaccharide and phytohemagglutinin-P were used for stimulation of monocytes/macrophages and T cells, respectively. Cells were exposed for 20 to 22 hours to either di-ethyl, di-n-butyl or mono-n-butyl phthalate at two different concentrations. Both diesters were metabolised to their respective monoester and influenced cytokine secretion from both monocytes/macrophages and T cells in a similar pattern: the secretion of interleukin (IL)-6, IL-10 and the chemokine CXCL8 by monocytes/macrophages was enhanced, while tumour necrosis factor (TNF)-α secretion by monocytes/macrophages was impaired, as was the secretion of IL-2 and IL-4, TNF-α and interferon-γ by T cells. The investigated phthalate monoester also influenced cytokine secretion from monocytes/macrophages similar to that of the diesters. In T cells, however, the effect of the monoester was different compared to the diesters. The influence of the phthalates on the cytokine secretion did not seem to be a result of cell death. Thus, results indicate that both human innate and adaptive immunity is influenced in vitro by phthalates, and that phthalates therefore may affect cell differentiation and regenerative and inflammatory processes in vivo.  相似文献   

16.
Anti-inflammatory treatment of autoimmune diseases is associated with an increased risk of reactivation tuberculosis (TB). Besides interleukin (IL-17)A, IL-22 represents a classical T helper (TH)17 cytokine and shares similar pathological effects in inflammatory diseases such as psoriasis or arthritis. Whereas IL-17A supports protective immune responses during mycobacterial infections, the role of IL-22 after infection with Mycobacterium tuberculosis (Mtb) is yet poorly characterized. Therefore, we here characterize the cell types producing IL-22 and the protective function of this cytokine during experimental TB in mice. Like IL-17A, IL-22 is expressed early after infection with Mtb in an IL-23-dependent manner. Surprisingly, the majority of IL-22-producing cells are not positive for IL-17A but have rather functional characteristics of interferon-gamma-producing TH1 cells. Although we found minor differences in the number of naive and central memory T cells as well as in the frequency of TH1 and polyfunctional T cells in mice deficient for IL-22, the absence of IL-22 does not affect the outcome of Mtb infection. Our study revealed that although produced by TH1 cells, IL-22 is dispensable for protective immune responses during TB. Therefore, targeting of IL-22 in inflammatory disease may represent a therapeutic approach that does not incur the danger of reactivation TB.  相似文献   

17.
《Cytokine》2010,49(3):254-259
Probiotic strains play an important role in modulating activities in the gut-associated lymphoid tissue. Elucidation of the mechanisms that mediate probiotic-driven immunomodulation may facilitate their therapeutic application for specific immune-mediated diseases or for prophylaxis. In this study, we explored the effect of different Lactobacillus spp. and Bifidobacterium lactis in transgenic mice expressing the human DQ8 heterodimer, a HLA molecule linked to Celiac Disease (CD). In vitro analysis on immature bone marrow-derived dendritic cells (iBMDCs) showed that all strains up-regulated surface B7-2 (CD86), indicative of DC maturation, however, with different intensity. No strain induced appreciable levels of IL-10 or IL-12 in iBMDCs, whereas TNF-α expression was essentially elicited by Lactobacillus paracasei and Lactobacillus fermentum. Interestingly, these strains were found also to increase the antigen-specific TNF-α secretion in vivo, following co-administration of probiotic bacteria in mice mucosally immunized with the gluten component gliadin. Together these findings highlighted the ability of probiotics to exert strain-specific inductive rather than suppressive effects both on the innate and adaptive immunity in a mouse model of food antigen sensitivity.  相似文献   

18.
Interleukin-22 (IL-22) is a member of the IL-10 cytokine family that binds to a heterodimeric receptor consisting of IL-22 receptor 1 (IL-22R1) and IL-10R2. IL-22R expression was initially characterized on epithelial cells, and plays an essential role in a number of inflammatory diseases. Recently, a functional receptor was detected on cancer cells such as hepatocarcinoma and lung carcinoma, but its presence was not reported in glioblastoma (GBM). Two GBM cell lines and 10 primary cell lines established from patients undergoing surgery for malignant GBM were used to investigate the expression of IL-22 and IL-22R by using quantitative RT-PCR, western blotting and confocal microscopy studies. The role of IL-22 in proliferation and survival of GBM cell lines was investigated in vitro by BrdU and ELISA cell death assays. We report herein that the two subunits of the IL-22R complex are expressed on human GBM cells. Their activation, depending on exogenous IL-22, induced antiapoptotic effect and cell proliferation. IL-22 treatment of GBM cells resulted in increased levels of phosphorylated Akt, STAT3 signaling protein and its downstream antiapoptotic protein Bcl-xL and decreased level of phosphorylated ERK1/2. In addition, IL-22R subunits were expressed in all the 10 tested primary cell lines established from GBM tumors. Our results showed that IL-22R is expressed on GBM established and primary cell lines. Depending on STAT3, ERK1/2 and PI3K/Akt pathways, IL-22 induced GBM cell survival. These data are consistent with a potential role of IL-22R in tumorigenesis of GBM. Since endogenous IL-22 was not detected in all studied GBM cells, we hypothesize that IL-22R could be activated by immune microenvironmental IL-22 producing cells.  相似文献   

19.
The development of therapeutic bacteriophages will provide several benefits based on an understanding the basic physiological dynamics of phage and bacteria interactions for therapeutic use in light of the results of antibiotic abuse. However, studies on bacteriophage therapeutics against microbes are very limited, because of lack of phage stability and an incomplete understanding of the physiological intracellular mechanisms of phage. The major objective of this investigation was to provide opportunity for development of a novel therapeutic treatment to control respiratory diseases in swine. The cytokine array system was used to identify the secreted cytokines/chemokines after Bordetella bronchiseptica infection into swine nasal turbinate cells (PT-K75). We also performed the real-time quantitative PCR method to investigate the gene expression regulated by B. bronchiseptica infection or bacteriophage treatment. We found that B. bronchiseptica infection of PT-K75 induces secretion of many cytokines/chemokines to regulate airway inflammation. Of them, secretion and expression of IL-1β and IL-6 are increased in a dose-dependent manner. Interestingly, membrane-bound mucin production via expression of the Muc1 gene is increased in B. bronchiseptica-infected PT-K75 cells. However, cytokine production and Muc1 gene expression are dramatically inhibited by treatment with a specific B. bronchiseptica bacteriophage (Bor-BRP-1). The regulation of cytokine profiles in B. bronchiseptica-induced inflammation by B. bronchiseptica bacteriophage is essential for avoiding inappropriate inflammatory responses. The ability of bacteriophages to downregulate the immune response by inhibiting bacterial infection emphasizes the possibility of bacteriophage-based therapies as a novel anti-inflammatory therapeutic strategy in swine respiratory tracts.  相似文献   

20.
Potential use of Lactococcus lactis (L. lactis) as a heterologous protein expression host as well as for delivery of multiple therapeutic proteins has been investigated extensively using Nisin Inducible Controlled Expression (NICE) system. Optimum inducible expression of heterologous protein by NICE system in L. lactis depends on multiple factors. To study the unexplored role of factors affecting heterologous protein expression in L. lactis using NICE, the present study outlines the optimization of various key parameters such as inducer concentration, host’s proteases and precipitating agent using Outer membrane protein A (OmpA). For efficient expression and secretion of OmpA, pSEC:OmpA vector was successfully constructed. To circumvent the troubles encountered during detection of expressed OmpA, the precipitating agent was switched from TCA to methanol. Nevertheless, detection was achieved accompanied by degraded protein products. Speculating the accountability of observed degradation at higher inducer concentration, different nisin concentrations were evaluated. Lower nisin concentrations were found desirable for optimum expression of OmpA. Consistently observed degradation was eliminated by incorporation of protease inhibitor cocktail which inhibits intracellular proteases and expression in VEL1153 (NZ9000 ΔhtrA) strain which inhibits extracellular protease leading to optimum expression of OmpA. Versatility and complexity of NICE system in L. lactis requires fine-tuning of target protein specific parameters for optimum expression.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0556-2) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号