首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 890 毫秒
1.
兼性肠球菌Enterococcus hirae AUH-HM195对黄豆苷原的开环转化   总被引:2,自引:0,他引:2  
摘要:【目的】从褐马鸡粪样中分离对大豆异黄酮黄豆苷原具有转化作用的功能微生物菌株。【方法】在厌氧工作站内对褐马鸡新鲜粪样进行梯度稀释后涂板,从板上挑取单菌落与底物黄豆苷原厌氧混合培养,用高效液相色谱检测底物被转化情况。【结果】分离出一株对黄豆苷原具开环转化作用的革兰氏阳性兼性好氧菌株AUH-HM195(EU919863),经BLAST比对,该菌株的16S rDNA基因全序与肠球菌属菌株Enterococcus hirae (DSM20160) 的相似性为100%。根据保留时间、代谢产物最大紫外吸图谱以及核  相似文献   

2.
牛瘤胃分离菌株静息细胞培养体系生物转化黄豆苷原   总被引:2,自引:0,他引:2  
从牛瘤胃胃液中分离了一株在厌氧条件下能利用其生长细胞将大豆异黄酮黄豆苷原高效还原为二氢黄豆苷原的革兰氏阳性细菌菌株Niu-O16。研究了菌株Niu-O16静息细胞体系转化黄豆苷原的最佳转化条件,通过单因素试验确定菌株Niu-O16静息细胞转化黄豆苷原的最佳条件是:初始pH6.0~8.0,静息细胞浓度32~64mg/mL(湿重),加入底物浓度0.8~1.2mmol/L。通过正交试验确定了静息细胞浓度、加入底物浓度及转化时间的最佳组合为:静息细胞浓度32mg/mL、加入底物浓度0.8mmol/L、转化时间24h;最佳转化条件下底物转化率最高为63.9%。该结果为厌氧菌的静息细胞转化及工业应用提供了参考。  相似文献   

3.
摘要: 【目的】探讨不同动物肠道优势需氧菌对黄豆苷原转化菌株转化能力的影响。【方法】有氧条件下,采用稀释涂布法分别从ICR 小鼠、芦花鸡、长白猪和獭兔等4 种健康动物肠道中分离优势需氧菌,将不同动物的优势需氧菌分别与不同类型黄豆苷原转化菌株进行厌氧混合培养,高效液相色谱检测培养液中黄豆苷原的转化情况。【结果】16S rRNA 基因序列分析,结合形态学及相关理化特性分析表明,分离的22 株优势需氧菌分属埃希氏菌属(10 株) 、变形菌属(5 株) 、肠球菌属(4 株) 、芽胞杆菌属(2 株) 和假单胞菌属(  相似文献   

4.
黑龙江省野生和栽培大豆异黄酮与其组分相关性分析   总被引:1,自引:0,他引:1  
利用高效液相色谱法(HPLC)检测了黑龙江省556份不同生态区以及不同类型大豆的异黄酮、大豆苷和染料木苷含量,其中野生大豆243份,栽培大豆313份。结果表明:野生大豆异黄酮含量高于栽培大豆,同时筛选出高异黄酮含量种质3份,低异黄酮含量种质2份。异黄酮、大豆苷和染料木苷含量三者问的相关分析表明,大豆异黄酮含量与大豆苷含量及染料木苷含量、大豆苷含量与染料木苷含量均呈极显著正相关。  相似文献   

5.
为探索培养基中的豆粕以及制备豆粕的原材料大豆对蝙蝠蛾拟青霉发酵产物的影响,我们比较了不同品种大豆和用其制成的豆粕的主要营养成分含量,包括粗蛋白、粗脂肪、6种微量元素(钙、镁、铜、锌、铁、锰)和总异黄酮(大豆苷、黄豆黄苷、染料木苷、大豆苷元、黄豆黄素、染料木素),以及豆粕作为培养基对蝙蝠蛾拟青霉发酵产物的生物量和有效成分含量包括腺苷、腺嘌呤、虫草素和麦角甾醇的影响,结果表明大豆中钙和大豆苷与发酵产物中腺苷含量正相关。豆粕中钙、大豆苷、大豆苷元、染料木素与发酵产物中腺苷含量正相关;豆粕中钙、镁、大豆苷、大豆苷元、染料木素、总异黄酮与发酵产物中腺嘌呤含量负相关;豆粕中铁与菌丝体干重值正相关。结果表明,培养基中的豆粕和原料大豆主要营养成分含量对蝙蝠蛾拟青霉发酵产物品质有显著影响。  相似文献   

6.
【目的】与原出发菌株AUH-JLC140相比,耐氧突变株Aeroto-AUH-JLC140在其生长过程中产生一种未知物质,且该未知物质的产生与添加底物黄豆苷原无关。对该未知物质进行分离纯化和结构鉴定,并测定其产生动态及抗氧化活性。【方法】利用高效液相色谱对未知物质进行分离,经紫外吸收图谱、质谱、核磁共振氢谱和碳谱等分析,对未知物质进行结构鉴定;通过1,1-二苯基-2-苦味酰基自由基(DPPH)清除试验测定其抗氧化活性。【结果】Aeroto-AUH-JLC140产生的未知物质被鉴定为吲哚,接种后15 h菌株产吲哚最高,所产吲哚量为19.89 mg/L。浓度为0.2 mmol/L(即23.40 mg/L)的吲哚除对DPPH自由基具有明显清除作用外,还能有效降低脑心浸液(BHI)液体培养基的氧化-还原电位。【结论】耐氧突变株Aeroto-AUH-JLC140产生的未知代谢产物为吲哚,菌株通过产生吲哚降低培养基氧化-还原电位,进而为该菌株的生长提供适宜的低氧微环境。  相似文献   

7.
雌马酚是大豆异黄酮的代谢产物,是一种天然的选择性雌激素受体调节剂,稳定性和生物学活性高。为实现雌马酚的微生物合成,采用模块途径工程策略,构建编码雌马酚合成关键酶基因 orf-1、orf-2和orf-3 的表达载体,成功用于转化酿酒酵母BY4741,得到工程菌株。结果表明,工程菌株有效表达了外源基因,并可将大豆异黄酮代谢中间体二氢大豆苷元转化为雌马酚。为构建从头合成雌马酚的微生物细胞工厂提供了重要科学参考。  相似文献   

8.
【目的】筛选一株可转化大豆苷元为S-雌马酚的微生物菌株,并对该菌株进行鉴定。【方法】在厌氧条件下采用抗生素抑制非目标菌生长并结合稀释涂平板法进行菌株分离,分离可转化大豆苷元生成S-雌马酚的肠道细菌,并对产物进行结构鉴定。之后通过16S rDNA序列分析,构建该菌系统进化树,结合菌体形态及菌落特征,确立该菌系统发育学地位。【结果】从大鼠肠道内筛选分离到一株可以将大豆苷元转化为S-雌马酚的革兰氏阴性兼性厌氧菌株LH-52(JN861767),16S rDNA序列测序结果 BLAST比对表明该菌株与奇异变形杆菌(Proteus mirabilis)相似度达到了99%,结合形态特征和生理生化实验结果鉴定该菌为奇异变形杆菌。根据HPLC保留时间、质谱、核磁共振等波谱数据分析确定产物为S-雌马酚。【结论】菌株P.mirabilis LH-52为首次筛选到的可转化大豆苷元为S-雌马酚的兼性厌氧菌,相对于文献报道的严格厌氧菌更适合于工业化生产。  相似文献   

9.
大豆食品中通常富含染料木素和大豆苷元等异黄酮素,人和动物肠道中的某些细菌具有将异黄酮素代谢转化为S-雌马酚的能力。到目前为止,S-雌马酚被认为是一种具有潜在健康调节作用的化合物。啮齿类动物均具备产雌马酚的能力,但不同人群之间存在差异,产雌马酚细菌是否存在可能是造成这种差异的重要原因;不同产雌马酚细菌的代谢机制可能不同,并影响机体最终产雌马酚的能力。本文对已知的各种产雌马酚细菌及其细菌的雌马酚合成机制进行综述,以期为进一步了解雌马酚产生个体差异、雌马酚代谢转化效率、体外雌马酚的发酵生产,以及临床产雌马酚细菌的应用等提供理论参考。  相似文献   

10.
染料木素体外抑制人低密度脂蛋白氧化修饰作用   总被引:5,自引:1,他引:4  
为探讨染料木素对人低密度脂蛋白(LDL)氧化修饰的影响,采用铜离子(10 umol/L)体外氧化LDL的方法,观察大豆异黄酮主要成分染料木素(genistein)对LDL氧化过程中脂质过氧化产物丙二醛(MDA)含量和维生素E(VitE)水平的影响。结果:10 umol/LCuSO4与100 mg/L LDL共同孵育18 h,MDA含量明显升高,VitE含量明显降低,染料木素(0.25、1.25、2.5、12.5、25、50、125、250 umol/L)能显著降低MDA含量,升高VitE含量(P<0.01,P<0.05,P<0.02),且呈剂量依赖性。提示一定浓度范围的染料木素体外有抗LDL氧化修饰作用。  相似文献   

11.
A rod-shaped and Gram-positive anaerobic bacterium, named Niu-O16, which was isolated from bovine rumen contents, was found to be capable of anaerobically converting isoflavones daidzein and genistein to dihydrodaidzein (DHD) and dihydrogenistein (DHG), respectively. The metabolites DHD and DHG were identified using EI-MS and NMR spectrometric analyses. Stereoisomeric metabolites, which were separated on chiral stationary phase HPLC, were formed in equal amounts by the strain Niu-O16. Tautomerization reaction occurred on the B-ring of DHD and DHG seems to be attributed to the equal production of stereoisomeric metabolites. For the synthesis of DHD, the strain Niu-O16 showed an optimal pH range from 6.0 to 7.0 and completely reduced up to 800 microM of daidzein to DHD with the initial OD600nm=1.0 and pH 7.0 for 3 days incubation. The strain Niu-O16, showed relatively faster reduction activity toward daidzein to produce DHD than the previously isolated human intestinal bacterium Clostridium sp. HGH6.  相似文献   

12.
The original bovine rumen bacterial strain Niu-O16, capable of anaerobically bioconverting isoflavones daidzein and genistein to dihydrodaidzein (DHD) and dihydrogenistein (DHG), respectively, is a rod-shaped obligate anaerobic bacterium. After a long-term domestication, an oxygen-tolerant bacterium, which we named Aeroto-Niu-O16 was obtained. Strain Aeroto-Niu-O16, which can grow in the presence of atmospheric oxygen, differed from the original obligate anaerobic bacterium Niu-O16 by various characteristics, including a change in bacterial shape (from rod to filament), in biochemical traits (from indole negative to indole positive and from amylohydrolysis positive to negative), and point mutations in 16S rRNA gene (G398A and G438A). We found that strain Aeroto-Niu-O16 not only grew aerobically but also converted isoflavones daidzein and genistein to DHD and DHG in the presence of atmospheric oxygen. The bioconversion rate of daidzein and genistein by strain Aeroto-Niu-O16 was 60.3% and 74.1%, respectively. And the maximum bioconversion capacity for daidzein was 1.2 and 1.6 mM for genistein. Furthermore, when we added ascorbic acid (0.15%, m/v) in the cultural medium, the bioconversion rate of daidzein was increased from 60.3% to 71.7%, and that of genistein from 74.1% to 89.2%. This is the first reported oxygen-tolerant isoflavone biotransforming pure culture capable of both growing and executing the reductive activity under aerobic conditions.  相似文献   

13.
Isoflavone data concerning the metabolism and permeability on intestinal epithelial cells are scarce, particularly for microbial isoflavone metabolites. This study evaluates the absorption mechanisms for the isoflavones, genistein and daidzein, and their microbial metabolites, dihydrogenistein (DHG) and dihydrodaidzein (DHD). The permeability characteristics of isoflavones were compared by using the Caco-2 human colon adenocarcinoma cell line for a parallel artificial membrane permeability assay, and comparing their physicochemical properties. The data suggest that genistein, DHG and DHD were efficiently transported by passive diffusion according to the pH-partition hypothesis. Genistein was conjugated by phase II metabolizing enzymes and acted as a substrate of the breast cancer resistance protein (BCRP). Daidzein was not conjugated but did act as a substrate for BCRP, multidrug resistance-associated proteins, and P-glycoprotein. In contrast, DHG and DHD were markedly more permeable than their parent isoflavones; they were therefore difficult to transport by the efflux effect, and glucuronidation/sulfation was limited by the flux time.  相似文献   

14.
The metabolism of isoflavones by gut bacteria plays a key role in the availability and bioactivation of these compounds in the intestine. Daidzein and genistein are the most common dietary soy isoflavones. While daidzein conversion yielding equol has been known for some time, the corresponding formation of 5-hydroxy-equol from genistein has not been reported previously. We isolated a strictly anaerobic bacterium (Mt1B8) from the mouse intestine which converted daidzein via dihydrodaidzein to equol as well as genistein via dihydrogenistein to 5-hydroxy-equol. Strain Mt1B8 was a gram-positive, rod-shaped bacterium identified as a member of the Coriobacteriaceae. Strain Mt1B8 also transformed dihydrodaidzein and dihydrogenistein to equol and 5-hydroxy-equol, respectively. The conversion of daidzein, genistein, dihydrodaidzein, and dihydrogenistein in the stationary growth phase depended on preincubation with the corresponding isoflavonoid, indicating enzyme induction. Moreover, dihydrogenistein was transformed even more rapidly in the stationary phase when strain Mt1B8 was grown on either genistein or daidzein. Growing the cells on daidzein also enabled conversion of genistein. This suggests that the same enzymes are involved in the conversion of the two isoflavones.  相似文献   

15.
The effect of genistein and daidzein on protein synthesis in osteoblastic MC3T3-E1 cells in vitro was investigated to determine a cellular mechanism by which the isoflavones stimulate bone formation. Cells were cultured for 48 h in alpha-minimal essential medium containing either vehicle, genistein (l0(-7) - 10(-5) M) or daidzein (10(-7) - 10(-5) M). The 5,500 g supernatant of cell homogenate was used for assay of protein synthesis with [3H]leucine incorporation in vitro. The culture with genistein or daidzein caused a significant elevation of protein synthesis in the cell homogenate. The effect of genistein ( 10(-5) M) or daidzein ( 10(-5) M) in elevating protein synthesis was significantly prevented, when cells were cultured for 48 h in a medium containing either actinomycin D (10(-7) M) or cycloheximide (10(-6) M) in the absence or presence of isoflavones. Moreover, when genistein (10(-7) 10(-5) M) or daidzein (10(-6) and 10(-5) M) was added to the reaction mixture containing the cell homogenate obtained from osteoblastic cells cultured without isoflavone, protein synthesis was significantly raised. This increase was markedly blocked by the addition of cycloheximide (10(-7) M). In addition, [3H]leucyl-tRNA synthetase activity in the cytosol of osteoblastic cells was significantly increased by the addition of genistein (10(-6) and 10(-5) M) or daidzein (10(-5) M) into the enzyme reaction mixture. The present study demonstrates that genistein or daidzein can stimulate protein synthesis in osteoblastic MC3T3-E1 cells. The isoflavones may have a stimulatory effect on osteoblastic bone formation due to increasing protein synthesis.  相似文献   

16.
Summary It is known that estrogen can protect neurons from excitotoxicity. Since isoflavones possess estrogen-like activity, it is of interest to determine whether isoflavones can also protect neurons from glutamate-induced neuronal injury. Morphological observation and lactate dehydrogenase (LDH) release assay were used to estimate the cellular damage. It is surprising that, contrary to estrogen, isoflavones, specifically genistein and daidzein, are toxic to primary neuronal culture at high concentration. Treatment of neurons with 50 μM genistein and daidzein for 24 h increased LDH release by 90% and 67%, respectively, indicating a significant cellular damage. Under the same conditions, estrogen such as 17β-estradiol did not show any effect on primary culture of brain cells. At 100 μM, both genistein and daidzein increased LDH release by 2.6- and 3-fold, respectively with a 30-min incubation. Furthermore, both genistein and daidzein at 50 μM increased the intracellular calcium level, [Ca2+]i, significantly. To determine their mode of action, genistein and daidzein were tested on glutamate and GABAA receptor binding. Both genistein and daidzein were found to have little effect on glutamate receptor binding, while the binding of [3H]muscimol to GABAA receptors was markedly inhibited. However, 17β-estradiol did not affect GABAA receptor binding suggesting that the toxic effect of genistein and daidzein could be due to their inhibition of the GABAA receptor resulting in further enhancement of excitation by glutamate and leading to cellular damage. Ying Jin, Heng Wu contributed equally to this article.  相似文献   

17.
Peroxynitrite, a potent oxidant formed in vivo from the reaction of nitric oxide with superoxide, can mediate low-density liprotein (LDL) oxidation which is thought to increase the risk of atherosclerosis. This study investigates the inhibitory effect of the isoflavones, genistein and daidzein, together with their glycosidic forms, genistin and daidzin, on the peroxynitrite-mediated LDL oxidation and nitration of tyrosine. Genistein and daidzein were observed to dose-dependently inhibit peroxynitrite-mediated LDL oxidation, while their glucoside conjugates showed less activity. Moreover, all the isoflavones used in this study were found to be potent peroxynitrite scavengers, preventing the nitration of tyrosine. The ability of the isoflavones at 50 microM to decrease the tyrosine nitration induced by peroxynitrite (1 mM) was in the ratios of genistein (49%), daidzein (40%), daidzin (41%) and genistin (42%) when compared to the control (tyrosine incubated only with peroxynitrite). These results suggest that an intake of isoflavones could contribute to protecting against cardiovascular diseases and chronic inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号