首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Metabolite contents were determined in freeze-clamped kidney from acidotic and starved rats in order to elucidate the rate-controlling steps which are responsible for the acceleration of gluconeogenesis in these situations. 2. In the kidney of rats which were made mildly acidotic by replacing drinking water with 1.5% ammonium chloride for 7 to 10 days (when the plasma bicarbonate concentration was 20mm) the content of phosphoenolpyruvate was increased from the control value of 35 to 63nmol/g and that of 3-phosphoglycerate from 85 to 154nmol/g. 3. Similar but smaller changes in these metabolites occurred in the kidney of starved rats but there were no such changes in the kidney of rats 12h after an infusion of 0.25m-hydrochloric acid, although plasma bicarbonate concentration fell to about 10mm on this treatment. 4. The renal concentration of glucose 6-phosphate was not raised in rats that received ammonium chloride, but was increased in starved and acutely acidotic rats. 5. The concentrations of alpha-oxoglutarate, malate and citrate were less than half the normal value in the kidney of both groups of acidotic rats. These changes can be accounted for on the basis of equilibrium relationships among reversible reactions, particularly as a result of the rise in intracellular ammonia content. A less marked decrease in alpha-oxoglutarate and malate was found in the kidney of starved rats. 6. The renal cortical cytoplasmic oxaloacetate concentration was calculated to be decreased in acidotic and starved rats. 7. These results are discussed in the light of the known enhancement by acidosis and starvation of renal gluconeogenesis. In particular they support the suggestion that the phosphoenolpyruvate carboxykinase reaction is a site of control of gluconeogenesis in kidney in these conditions.  相似文献   

2.
Rates of ketone-body formation in the perfused rat liver   总被引:15,自引:13,他引:2       下载免费PDF全文
1. The rates of formation of acetoacetate and β-hydroxybutyrate by the isolated perfused rat liver were measured under various conditions. 2. The rates found after addition of butyrate, octanoate, oleate and linoleate were about 100μmoles/hr./g. wet wt. in the liver of starved rats. These rates are much higher than those found with rat liver slices. 3. The differences between the rates given by slices and by the perfused organ were much higher with the long-chain than with short-chain fatty acids. The increments caused by oleate and linoleate were 12 and 16 times as large in the perfused organ as in the slices, whereas the increments caused by butyrate and octanoate were about four times as large. 4. The rates of ketogenesis in the unsupplemented perfused liver of well-fed rats, and the increments caused by the addition of fatty acids, were about half of those in the liver from starved rats. 5. The value of the [β-hydroxybutyrate]/[acetoacetate] ratio of the medium was raised by octanoate, oleate and linoleate. 6. Carnitine did not significantly accelerate ketogenesis from fatty acids. 7. Oleate formed up to 82% of the expected yield of ketone bodies. 8. In the liver of alloxan-diabetic rats the endogenous rates of ketogenesis were raised, in some cases as high as in the liver from starved rats, after addition of oleate. 9. On addition of either β-hydroxybutyrate or acetoacetate to the perfusion medium the liver gradually adjusted the [β-hydroxybutyrate]/[acetoacetate] ratio towards the normal range. 10. The [β-hydroxybutyrate]/[acetoacetate] ratio of the medium was about 0·4 when slices were incubated, but near the physiological value of 2 when the liver was perfused. 11. The experiments demonstrate that for the study of ketogenesis slices are in many ways grossly inferior to the perfused liver.  相似文献   

3.
1. The influence of ethanol on the metabolism of livers from fed and starved rats has been studied in liver-perfusion experiments. Results have been obtained on oxygen consumption and carbon dioxide production, on glucose release and uptake by the liver and on changes in the concentrations of lactate and pyruvate and of β-hydroxybutyrate and acetoacetate in the perfusion medium. 2. Oxygen consumption and carbon dioxide production were lower in livers from starved rats than in livers from fed rats. Ethanol had no effect on the oxygen consumption of either type of liver. After the addition of ethanol to the perfusion medium carbon dioxide production ceased almost completely, the change being faster in livers from starved rats. 3. With livers from fed rats glucose was released from the liver into the perfusion medium. This release was slightly greater when ethanol was present. With livers from starved rats no release of glucose was observed, and when ethanol was added a marked uptake of glucose from the medium was found. A simultaneous release of glycolytic end products, lactate and pyruvate, into the medium occurred. 4. Acetate was the main metabolite accumulating in the perfusion medium when ethanol was oxidized. With livers from starved rats a slightly increased formation of ketone bodies was found when ethanol was present. 5. The lactate/pyruvate concentration ratio in the perfusion medium increased from 10 to 87 with livers from fed rats and from 20 to 171 with livers from starved rats when the livers were perfused with ethanol in the medium. The β-hydroxybutyrate/acetoacetate concentration ratio increased from 0·8 to 7·6 with livers from fed rats and from 1·0 to 9·5 with livers from starved rats when ethanol was added to the medium. 6. The effects of ethanol are discussed and related to changes in the redox state of the liver that produce new conditions for some metabolic pathways.  相似文献   

4.
Concentrations of citrate, hexose phosphates and glycogen were measured in skeletal muscle and heart under conditions in which plasma non-esterified fatty acids and ketone bodies were physiologically increased. The aim was to determine under what conditions the glucose-fatty acid cycle might operative in skeletal muscle in vivo. In keeping with the findings of others, starvation increased the concentrations of glycogen, citrate and the fructose 6-phosphate/fructose 1,6-bisphosphate ratio in heart, indicating that the cycle was operative. In contrast, it decreased glycogen and had no effect on the concentration of citrate or the fructose 6-phosphate/fructose 1,6-bisphosphate ratio in the soleus, a slow-twitch red muscle in which the glucose-fatty acid cycle has been demonstrated in vitro. In fed rats, exercise of moderate intensity caused glycogen depletion in the soleus and red portion of gastrocnemius muscle, but not in heart. In starved rats the same exercise had no effect on the already diminished glycogen contents in skeletal muscle, but it decreased cardiac glycogen by 25-30%. After exercise, citrate and the fructose 6-phosphate/fructose 1,6-bisphosphate ratio were increased in the soleus of the starved rat. Significant changes were not observed in fed rats. The data suggest that in the resting state the glucose-fatty acid cycle operates in the heart, but not in the soleus muscle, of a starved rat. In contrast, the metabolite profile in the soleus was consistent with activation of the glucose-fatty acid cycle in the starved rat during the recovery period after exercise. Whether the cycle operates during exercise itself is unclear.  相似文献   

5.
1. The utilization of [1,5-(14)C(2)]citrate by lung slices and cell cytosol preparations, and the activities of liver and lung cytosol citrate-cleavage enzyme (EC 4.1.3.8), l-malate-NAD oxidoreductase (malate dehydrogenase, EC 1.1.1.37) and phosphoenolpyruvate carboxylase (EC 4.1.1.32) were examined in normal and starved rats. 2. Lipogenesis from citrate was decreased by approx. 70% in both the phospholipid and neutral lipid fractions of lung slices from starved rats as compared with fed controls. 3. Incorporation of citrate by lung cytosol preparations into fatty acids was decreased by approx. 35% in the starved rats. The apparent inhibition by avidin of fatty acid synthesis was overcome partially by preincubation of lung cytosol preparations with biotin. These results are consistent with the presence in lung tissue of the malonyl-CoA pathway for fatty acid synthesis. 4. Lung citrate-cleavage enzyme activity decreased in rats that had been starved for 72h whereas malate dehydrogenase and phosphoenolpyruvate carboxylase activities remained unchanged. The results suggest that the pattern of utilization of lipid precursors by rat lung may be altered during various nutritional states.  相似文献   

6.
1. Incubation of hepatocytes from fed or starved rats with increasing glucose concentrations caused a stimulation of lactate production, which was further increased under anaerobic conditions. 2. When glycolysis was stimulated by anoxia, [fructose 2,6-bis-phosphate] was decreased, indicating that this ester could not be responsible for the onset of anaerobic glycolysis. In addition, the effect of glucose in increasing [fructose 2,6-bisphosphate] under aerobic conditions was greatly impaired in anoxic hepatocytes. [Fructose 2,6-bisphosphate] was also diminished in ischaemic liver, skeletal muscle and heart. 3. The following changes in metabolite concentration were observed in anaerobic hepatocytes: AMP, ADP, lactate and L-glycerol 3-phosphate were increased; ATP, citrate and pyruvate were decreased: phosphoenolpyruvate and hexose 6-phosphates were little affected. Concentrations of adenine nucleotides were, however, little changed by anoxia when hepatocytes from fed rats were incubated with 50 mM-glucose. 4. The activity of ATP:fructose 6-phosphate 2-phosphotransferase was not affected by anoxia but decreased by cyclic AMP. 5. The role of fructose 2,6-bisphosphate in the regulation of glycolysis is discussed.  相似文献   

7.
1. The content of citrate in ;freeze-clamped' livers from starved and alloxan-diabetic rats was measured by using the specific citrate assay method of Gruber & Moellering (1966). 2. The content of citrate fell progressively during a period of 48hr. starvation to reach a plateau value that is 50% of the value for livers from fed rats. Some possible explanations for the conflicting reports of changes in hepatic citrate content during starvation are discussed. 3. The hepatic contents of ATP, pyruvate, lactate, glycogen and the hexose phosphates were decreased during starvation, whereas those of acetyl-CoA and AMP were increased. 4. Acute alloxan-diabetes produced similar changes in the contents of these metabolic intermediates. 5. The effects of starvation and diabetes on the citrate and acetyl-CoA contents are discussed in relation to control of gluconeogenesis, fatty acid synthesis and the activity of citrate synthase.  相似文献   

8.
Summary Microquantitative determinations of ADH activity were carried out on the livers of male and female rats. The animals were either starved for 84 h, or starved and then refed with a carbohydrate-rich diet for 6 nights. When the enzyme activity is expressed in moles/min/g dry weight, fasting does not appear to alter liver ADH activity, while in starved and subsequently refed rats it is diminished by 20%. Microquantitative measurements of ADH activity in 50–150 ng lyophilized tissue samples, microdissected the whole way along the sinusoidal length, made the computeraided plotting of intra-acinar distribution patterns possible. The results showed that, under the feeding conditions selected, only minor changes in the ADH activity profiles occur in the liver acinus. These are within the range of the standard deviations of the normal mean values. From these results it can be deduced that fasting and refeeding do not lead to specific inhibition or induction of liver ADH activity.—The decrease of ADH activity of total liver (mol/min) per total body weight in starved rats is obviously the result of a loss of protein which affects the liver cells of all acinar zones almost equally.This study is part of a dissertation which will be presented to the Phil.-Nat. Faculty of the University of Basel by I.P. MalySupported by grants from the Schweizerische Stiftung für Alkoholforschung  相似文献   

9.
The function of lipid peroxidation and the anti-peroxidative enzymes of rat liver and kidney were investigated under hyperoxaluric and stone forming conditions. The experimental animals showed higher malondialdehyde content in liver and kidney than that of control. A significant increase in malondialdehyde release was observed in the experimental liver or kidney when incubated with either ferrous sulphate or hydrogen peroxide compared to that of control liver or kidney. Superoxide dismutase activity was not affected in the hyperoxaluric rats while there was a moderate increase in the stone forming rats when compared to control. Highly significant decrease in catalase activity was observed in both conditions in liver and kidney compared to control.  相似文献   

10.
The present report reviews our findings on the subcellular distribution of albumin mRNA in rat liver under normal and abnormal physiologic conditions, the identification of albumin mRNA in specific mRNP complexes in liver cytosol of starved rats, and evidence for albumin mRNA sequences in a higher molecular weight nuclear precursor to cytoplasmic albumin mRNA.  相似文献   

11.
Circulating [14C]glucose 2, 5 and 10 min after intravenous injection of [U-14C]-L-alanine was greater in 24 hr starved than in fed rats. In vitro uptake of [14C]alanine by liver and kidney cortex slices from 24 hr starved and fed rats rose in parallel with increased medium substrate concentration. Formation of [14C]glucose from 1mM [14C]alanine was similar in liver and kidney cortex slices and increased in tissues from 24 hr starved compared with fed rats. With 5 mM [14C]alanine more [14C]glucose was produced by liver than by kidney cortex slices from 24 hr starved rats. Liver slices always produced more [14C]lactate and less [14C]-CO2 from [14C]alanine than kidney cortex slices. It is proposed that under physiological conditions, the kidneys cortex actively participates in glucose production from alanine.  相似文献   

12.
Acetyl-CoA carboxylase from liver exhibits a linear inverse relationship between the ratio of enzymic activities at 0 and 2 mM citrate and the extent of phosphorylation by its kinase, and this citrate activity ratio method was used to examine the effect of nutritional conditions on the phosphorylation state of the enzyme. This method showed that the calculated phosphorylation state, being the extent of phosphorylation at sites accessible to carboxylase kinase, was highest in the livers of starved rats, lower in those fed normally, and lower still in starved rats which had been refed for 48 h on a fat-free diet. The actual values were 0.44, 0.26, and 0 mol of P/subunit, respectively, provided that liver samples were frozen rapidly to liquid nitrogen temperatures and extracted with stopping buffers at temperatures well below freezing. Normal homogenization with stopping buffers (containing inhibitors for protein kinases and phosphatases) resulted in much higher calculated phosphorylation states. The effect of nutritional conditions on the phosphorylation state as estimated reported above was confirmed by purifying the carboxylase from livers of rats, measuring the amount of phosphate which could be incorporated by carboxylase kinase, and comparing this with the phosphorylation state calculated from the citrate activity ratio method or the specific activity. Furthermore, treatment with protein phosphatase of carboxylase from starved rats resulted in the largest increase in specific activity, that from the starved/refed rats in the least. Finally, the effects of hyperglycemia on carboxylase and phosphorylase characteristics in the livers of intact rats were ascertained by taking liver samples and preparing crude extracts by the rapid freezing method described above. Hyperglycemia caused a rapid increase in the activity of the carboxylase and a rapid decrease in its putative phosphorylation state as measured by the citrate activity ratio method. Phosphorylase was also dephosphorylated, as indicated by a decrease in phosphorylase a activity. We conclude that the citrate activity ratio method is a valid test for the phosphorylation state of acetyl-CoA carboxylase in crude extracts of tissue.  相似文献   

13.
Carnitine and derivatives in rat tissues   总被引:22,自引:22,他引:0       下载免费PDF全文
1. Free carnitine, acetylcarnitine, short-chain acylcarnitine and acid-insoluble carnitine (probably long-chain acylcarnitine) have been measured in rat tissues. 2. Starvation caused an increase in the proportion of carnitine that was acetylated in liver and kidney; at least in liver fat-feeding had the same effect, whereas a carbohydrate diet caused a very low acetylcarnitine content. 3. In heart, on the other hand, starvation did not cause an increase in the acetylcarnitine/carnitine ratio, whereas fat-feeding caused a decrease. The acetylcarnitine content of heart was diminished by alloxan-diabetes or a fatty diet, but not by re-feeding with carbohydrate. 4. Under conditions of increased fatty acid supply the acid-insoluble carnitine content was increased in heart, liver and kidney. 5. The acylation state of carnitine was capable of very rapid change. Concentrations of carnitine derivatives varied with different methods of obtaining tissue samples, and very little acid-insoluble carnitine was found in tissues of rats anaesthetized with Nembutal. In liver the acetylcarnitine (and acetyl-CoA) content decreased if freezing of tissue samples was delayed; in heart this caused an increase in acetylcarnitine. 6. Incubation of diaphragms with acetate or dl-β-hydroxybutyrate caused the acetylcarnitine content to become elevated. 7. Perfusion of hearts with fatty acids containing an even number of carbon atoms, dl-β-hydroxybutyrate or pyruvate resulted in increased contents of acetylcarnitine and acetyl-CoA. Accumulation of these acetyl compounds was prevented by the additional presence of propionate or pentanoate in the perfusion medium; this prevention was not due to extensive propionylation of CoA or carnitine. 8. Perfusion of hearts with palmitate caused a severalfold increase in the content of acid-insoluble carnitine; this increase did not occur when propionate was also present. 9. Comparison of the acetylation states of carnitine and CoA in perfused hearts suggests that the carnitine acetyltransferase reactants may remain near equilibrium despite wide variations in their steady-state concentrations. This is not the case with the citrate synthase reaction. It is suggested that the carnitine acetyltransferase system buffers the tissue content of acetyl-CoA against rapid changes.  相似文献   

14.
For better understanding the complete metabolism and the physiological role of D-lactate, the concentrations of D-lactate in the serum, liver and kidney of normal and diabetic rats were determined by our established column-switching HPLC method with pre-column fluorescence derivatization. Eight-week-old male Sprague-Dawley rats were administered with streptozotocin (STZ) (80 mg/kg) or citrate buffer intraperitoneally. The tissues were then removed and homogenized after 4, 8, 12 and 16 weeks of drug administration, respectively. The homogenates were centrifuged at 1200 × g for 10 min, then the supernatants were derivatized with a fluorescent reagent, 4-nitro-7-piperazino-2,1,3-benzoxadiazole (NBD-PZ), separated on an ODS column followed by a Chiralpak AD-RH chiral column for enantioseparation. The results showed that the D-lactate content elevated in all the 3 examined tissues under diabetic stages. In addition, D-lactate concentrations in rat kidney were accumulated significantly and time-dependently in diabetic groups after receiving STZ for 4, 8, 12 and 16 weeks (2.99, 13.11, 18.19, 23.23 vs. 0.79 μmol/mg protein as control group). Moreover, the kidney of induced 12-week diabetic rat renal showed some histological changes of progressive diabetic nephropathy. The results suggest that D-lactate may be used as a marker of diabetic nephropathy.  相似文献   

15.
In the rat, renal compensatory hypertrophy (RCH) was apparent 48 h after uninephrectomy; it was significantly enhanced by long-acting beta1-24-corticotrophin (ACTH) when the animals had free access to food and a NaCl solution (9 g/l). In rats starved after uninephrectomy but drinking the NaCl solution freely, RCH was suppressed: the weights of the body, heart, liver, and solitary kidney were reduced. In similarly starved rats treated with ACTH, the weights of the heart and the solitary kidney were normal. RCH was also impaired in rats fed only a glucose solution (30 g/dl) after uninephrectomy, but it is restored by ACTH, which significantly increases the weight of the remaining kidney. This renotrophic action of ACTH may be related to hyperglycemia and, perhaps, elevated urinary K excretion, which occur in hyper-adrenocorticism and increase the work load of the nephron.  相似文献   

16.
1. Glycerol 3-phosphate content of isolated hepatocytes from starved rats and of glycogen-depleted hepatocytes from fed rats was low and severely limited triacylglycerol synthesis. 2. Raising the glycerol 3-phosphate content by addition of precursors to the cells resulted in a hyperbolic-like relationship between triacylglycerol synthesis and cellular glycerol 3-phosphate content. Statistical analysis of the curves showed no significant differences between the nutritional states either at saturating or at subsaturating glycerol 3-phosphate content. 3. Vmax. of glycerophosphate acyltransferase measured in homogenized hepatocytes was decreased by 30–40% in starvation. There was no change in apparent Km for glycerol 3-phosphate. Since at saturating glycerol 3-phosphate content esterification rates in hepatocytes of both nutritional states were identical, the enzyme is not limiting esterification under this condition. 4. At subsaturating glycerol 3-phosphate content the flux through glycerophosphate acyltransferase necessarily limits esterification. Therefore one would expect a decrease in esterification in starvation under this condition. This was the case when triacylglycerol synthesis was plotted against intracellular glycerol 3-phosphate concentration, calculated from the cellular glycerol 3-phosphate content and the intracellular water space, which was smaller in hepatocytes from starved rats. 5. The data obtained in hepatocytes were extrapolated to the intact liver by using the number of parenchymal cells per g of liver as determined from marker-enzyme analysis and the liver weight per 100g body weight. The extrapolation suggested that glycerol 3-phosphate is limiting esterification in vivo for contents below 0.3–0.4 and 0.5–0.65μmol/g for livers from fed and starved animals respectively. Also for a given fatty acid load and a glycerol 3-phosphate content below 0.3μmol/g the liver may esterify less in the starved state. However, at the glycerol 3-phosphate contents measured in freeze-clamped livers (0.30 and 0.44μmol/g for the fed and starved state respectively), livers in both nutritional states seemed capable of esterifying similar amounts of fatty acids.  相似文献   

17.
The activity of some NAD- and NADP-dependent dehydrogenases involved in generation of the reducing equivalents for lipogenesis and the activity and some kinetic parameters of ATP-citrate (pro-3S)-lyase from rat liver, i. e. the enzyme involved in the formation of CoASAc, the primary substrate of fatty acid biosynthesis, were studied. The changes in the activity of NADP-dependent dehydrogenase and ATP-citrate(pro-3S)-lyase, as well as the affinity of the latter for sitrate and CoA and the rate of lipogenesis in starved rats and in rats kept on a carbohydrate-rich diet after starvation appeared to be parallel. Nicotinamide decreased the activity of all NADP-dependent dehydrogenases under study, which was especially well-pronounced after nicotinamide addition against increased lipogenesis. The affinity of ATP-citrate(pro-3S)-lyase for citrate and CoA decreased simultaneously with the decrease in the concentration of the latter. These changes can possibly induce the decrease of lipogenesis rate in rat liver after addition of nicotinamide.  相似文献   

18.
There is a dramatic rise in the protein synthetic activity of rough endoplasmic reticulum (RER) of liver from starved and starved-refed rats, compared to normal controls. This observation is similar to the doubling of protein synthetic activity of rat liver RER observed 20 hours after partial hepatectomy (1). Oxidised glutathione (GSSG), a potent inhibitor of protein synthesis by normal RER, was a much less effective inhibitor when assayed with RER from the livers of starved rats, this again is in parallel with our earlier observations in regenerating liver. This common pattern of response is discussed in terms of a cellular control system which responds to changes in the cytoplasmic sulphydryl concentration.  相似文献   

19.
The effect glucocorticoids on the synthesis and degradation of phosphoenolpyruvate carboxykinase (GTP)(EC4.1.1.32) in rat liver and kidney in vivo was studied immunochemically. The glucocorticoid analogue triamcinolone (9alpha-fluoro-11beta, 21-dihydroxy-16alpha,17alpha-isopropylidenedioxypregna-1,4-diene-3,20-dione) increased the synthesis rate of the kidney enzyme in starved animals. Both triamcinolone and cortisol decreased the synthesis rate of hepatic phosphoenolpyruvate carboxykinase (GTP) in fed and starved rats, but were without effect on the degradation rate of the enzyme. This effect of triamcinolone in liver was reversed by injection of dibutyryl cyclic AMP. However, in diabetic animals glucocorticoids increased the synthesis rate of hepatic phosphoenolpyruvate carboxykinase (GTP). Triamcinolone administration to starved rats in vivo is shown to cause an increase in the portal blood concentrations of insulin and glucose. Since the physiological de-inducer of liver phosphoenolpyruvate carboxykinase (GTP) is insulin, this is the probable cause of the decrease in the synthesis rate of the hepatic enzyme noted when glucocorticoids are administered to non-diabetic animals.  相似文献   

20.
Summary Specific radioactive enzyme assays were developed to measure the effect of growth hormone on kidney transamidinase and liver methyltransferase in the hypophysectomized rat. In contrast to minimal changes (20%) in liver methyltransferase, kidney transamidinase was decreased threefold in the hypophysectomized rat. Enzyme activities were equal to normal values in those rats receiving growth hormone for three days. The formation of creatine from radioactive precursors and the uptake of 14C-creatine in muscle was examined under these conditions. After injection of 14C-arginine in the hypophysectomized rat, the 14C-creatine content of muscle was greatly decreased compared to sham operated controls and the 14C-creatine content was normal after growth hormone administration. After injection of 14C-guanidoacetate and of 14C-creatine, the 14C-creatine content of muscle was decreased in the hypophysectomized rat, but was equal to sham control values in rats receiving growth hormone. These studies indicate that the uptake of newly synthesized creatine by muscle is impaired in the hypophysectomized rat and that growth hormone can have a role in controlling the rate of creatine uptake by muscle in addition to its effect on kidney transamidinase and to other factors involved in creatine metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号