首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We compared the 5' termini and splices of the late 16S and 19S RNAs synthesized by wild-type simian virus 40 and five mutants containing deletions in their late leader region. All mutants produced more unspliced 19S RNA than did wild-type virus, and in two mutants, unspliced 19S RNA constituted more than 60% of the total 19S species. The other three mutants each utilized predominantly a different one of the three spliced species of 19S mRNA. All mutants also produced decreased quantities of 16S mRNA, indicating that they may be defective for splicing both late RNAs. None of the 5' termini of the 16S and 19S RNAs made by the five mutants predominated as in those made by the wild type. Some of the mutant 5' termini were the same as those used by the wild type, whereas others were different. Although present, the major 5'-end positions used by the wild type were frequently not used as major sites by the mutants. In addition, mutants with very similar deletion endpoints synthesized RNAs with different 5' ends. Thus, downstream mutations have a pronounced effect on the location of 5' ends of the late RNAs, and there is no obvious involvement of a measuring function in the placement of 5' ends. For all mutants and wild-type virus, the 5' termini used for 16S and 19S RNAs showed major differences, with some degree of correlation found between the 5' ends and the internal splices of specific mRNA species. A model for the regulation of simian virus 40 late gene expression is presented to explain these findings.  相似文献   

2.
3.
Multiple 5' terminal cap structures in late polyoma virus RNA.   总被引:31,自引:0,他引:31  
A J Flavell  A Cowie  S Legon  R Kamen 《Cell》1979,16(2):357-371
Nuclear and cytoplasmic polyoma virus-specific RNA extracted from 32P-labeled mouse embryo cells late during productive viral infection was analyzed for the presence of 5' terminal capped structures by complete digestion with RNAases T1, T2 and A, followed by two-dimensional electrophoretic fractionation. Seven major cap I structures (m7 GpppNm1pN2p) were observed in both cases. These termini were further characterized by digestion with penicillium nuclease P1, followed by product analysis in a variety of alternative separate systems. Each structure had an individual combination of N1 and N2 nucleotides, where N1 was always a purine nucleotide but N2 was any nucleotide subject to the single exception that m7GpppGmpCp is found only in low yield. Four different cap II derivatives (m7GpppNm1pNm2pN3p) of four of the cap I structures were also detected in cytoplasmic RNA. None of the termini described derived from contaminating host cell RNA. All of these cap structures mapped on the polyoma viral DNA genome between 66 and 71 map units, a region distant from the 5' end of the bodies of two of the three late polyoma mRNAs. All the polyoma virus-specific cap structures, however, were present in each of the purified 16S, 18S and 19s late mRNAs. These data suggested that families of capped leader sequences of varying sizes are attached to the main body of each late polyoma mRNA species by a splicing mechanism.  相似文献   

4.
We mapped polyoma virus-specific mRNAs isolated from productively infected mouse 3T6 cells on the viral genome by analyzing nuclease S1-resistant RNA-DNA hybrids. The polyoma early mRNAs, which code for the three T antigens, have several 5' ends near 73 map units (m.u.). During the late phase of infection an additional 5' end is found near 71 m.u. All of the major early mRNAs have common 3' ends at 26.01 m.u. There is a minor species of early mRNA with a 3' end at 99.05 m.u. There are two proximal and two distal splice junctions in the early region which are used to generate three different spliced early mRNAs. There are three late mRNAs encoding the three virion proteins, VP1, VP2, and VP3. The late mRNAs have common 3' ends at 25.34 m.u. The late mRNAs have heterogeneous 5' leader sequences derived from the region between 65.53 and 68.42 m.u. The leader sequences are joined to the bodies of the messages coding for VP2, VP3, and VP1 at 66.59, 59.62, and 48.57 m.u., respectively. These results confirm and extend previous analyses of the fine structure of polyoma mRNAs.  相似文献   

5.
6.
7.
M M Bendig  T Thomas  W R Folk 《Cell》1980,20(2):401-409
In polyoma virus the origin of replication, the 5′ ends of early mRNAs, and the initiation codon for early protein synthesis map within an approximately 200 bp region of the genome. We have previously reported the isolation and partial characterization of viable mutants of polyoma virus with deletions in this important regulatory region of the genome. Three of the mutants with large deletions, one of which had significantly altered growth properties, have been further characterized with respect to their nucleotide sequence alterations and their levels of viral DNA replication and of early protein synthesis. The nearly coincident deletions in mutants 17 and 2–19 reduce the capacity of these viruses to replicate, even in the presence of a coinfecting virus; thus they help define one boundary of the origin of DNA replication. The deletion in mutant 75 appears to remove sequences that are essential for efficient expression of early genes, but has little or no effect upon DNA replication. Its defect is complemented in trans by wild-type virus. All three mutants eliminate sequences which are candidates for RNA polymerase and ribosome binding sites near the initiation codon for early proteins.  相似文献   

8.
9.
10.
11.
Although wild-type polyoma virus does not productively infect murine embryonal carcinoma (EC) cells, a number of mutants (PyEC mutants) that do infect undifferentiated EC cells have been isolated. All PyEC mutants have DNA sequence alterations within the enhancer region of the viral genome. This report describes an activity present in nuclear extracts of F9 EC cells which, by "footprint" analyses, binds specifically to a small region of about 20 base pairs (nucleotides 5180-5200) within the subregion of the polyoma enhancer designated as the B or beta element. While no difference in binding of factor was detected between wild-type polyoma enhancer and the enhancers of the PyEC mutants, PyF111 and PyF441, which had been selected for productive infection of F9 cells, definite differences between wild-type and mutants were observed in the digestion patterns of their naked DNAs with either DNAase I or exonuclease III. This difference was restricted to the region around the point mutation (nucleotide 5258) common to these mutant DNAs.  相似文献   

12.
13.
14.
15.
16.
Molecular genetic studies have shown that determinants of chloroplast mRNA stability lie in both the 5' and 3' untranslated regions. While it is well-known that chloroplast mRNAs are unstable in the absence of certain nucleus-encoded factors, little is known of the decay mechanisms for chloroplast mRNA in wild-type cells. Here we used a poly(G)18 sequence, which impedes both 5'-->3' and 3'-->5' exoribonucleolytic RNA decay in vivo, to study the degradation pathway of petD mRNA in wild-type and mcd1 mutant chloroplasts of Chlamydomonas; the mcd1 mutant lacks a nucleus-encoded factor required for petD mRNA accumulation. Upon inserting poly(G) at positions -20, +25, +165 or +25/+165 relative to the mature petD 5' end, mRNAs accumulate with 5' ends corresponding to the poly(G) sequence, in addition to the normal RNA with its 5' end at +1. We interpret these results as evidence for continuous degradation of petD mRNA in wild-type cells by a 5'-->3' exoribonucleolytic activity. In the case of the -20 insertion, the accumulating RNA can be interpreted as a processing intermediate, suggesting that 5' end maturation may also involve this activity. When examined in the mcd1 mutant background, petD mRNAs with the poly(G) 5' ends, but not normal +1 ends, accumulated. However, no expression of SUIV, the petD gene product, was detected. Insertion of poly(G) at +165 in wild-type cells did not demonstrably affect SUIV accumulation, suggesting that ribosomal scanning does not occur upstream of this position. However, since neither poly(G) -20 nor +165 RNA could be translated in mcd1 cells, this raises the possibility that the MCD1 product is essential for translation.  相似文献   

17.
18.
Mouse adenovirus type 1 (MAV-1) mutants with deletions of conserved regions of early region 1A (E1A) or with point mutations that eliminate translation of E1A were used to determine the role of E1A in MAV-1 replication. MAV-1 E1A mutants expressing no E1A protein grew to titers comparable to wild-type MAV-1 titers on mouse fibroblasts (3T6 fibroblasts and fibroblasts derived from Rb+/+, Rb+/−, and Rb−/− transgenic embryos). To test the hypothesis that E1A could induce a quiescent cell to reenter the cell cycle, fibroblasts were serum starved to stop DNA replication and cellular replication and then infected with the E1A mutant and wild-type viruses. All grew to equivalent titers. Steady-state levels of MAV-1 early mRNAs (E1A, E1B, E2, E3, and E4) from 3T6 cells infected with wild-type or E1A mutant virus were examined by Northern analysis. Steady-state levels of mRNAs from the mutant-infected cells were comparable to or greater than the levels found in wild-type virus infections for most of the early regions and for two late genes. The E2 mRNA levels were slightly reduced in all mutant infections relative to wild-type infections. E1A mRNA was not detected from infections with the MAV-1 E1A null mutant, pmE109, or from infections with similar MAV-1 E1A null mutants, pmE112 and pmE113. The implications for the lack of a requirement of E1A in cell culture are discussed.  相似文献   

19.
20.
Analysis of the slowed turnover rates of several specific mRNA species and the higher cellular levels of some of these mRNAs in Saccharomyces cerevisiae lacking 5'-->3' exoribonuclease 1 (xrn1 cells) has led to the finding that these yeast contain higher amounts of essentially full-length mRNAs that do not bind to oligo(dT)-cellulose. On the other hand, the length of mRNA poly(A) chains found after pulse-labeling of cells lacking the exoribonuclease, the cellular rate of synthesis of oligo(dT)-bound mRNA, and the initial rate of its deadenylation appeared quite similar to the same measurements in wild-type yeast cells. Examination of the 5' cap structure status of the poly(A)-deficient mRNAs by comparative analysis of the m7G content of poly(A)- and poly(A)+ RNA fractions of wild-type and xrn1 cells suggested that the xrn1 poly(A)- mRNA fraction is low in cap structure content. Further analysis of the 5' termini by measurements of the rate of 5'-->3' exoribonuclease 1 hydrolysis of specific full-length mRNA species showed that approximately 50% of the xrn1 poly(A)-deficient mRNA species lack the cap structure. Primer extension analysis of the 5' terminus of ribosomal protein 51A (RP51A) mRNA showed that about 30% of the poly(A)-deficient molecules of the xrn1 cells are slightly shorter at the 5' end. The finding of some accumulation of poly(A)-deficient mRNA species partially lacking the cap structure together with the reduction of the rate of mRNA turnover in cells lacking the enzyme suggest a possible role for 5'-->3' exoribonuclease 1 in the mRNA turnover process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号