首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radial sculptural elements (e.g. ribs, lirae), formed by imbrication of two succeeding shell lamellae are found in members of both the Nautiloidea (Cymatoceras) and Ammonoidea (Phylloceratinae and Aspidoceratinae). Their formation involves periodic cessation of shell growth due to weak to moderate withdrawal of the shell secreting mantle. The radial lirae (0.5–1.5 mm in width) of Phylloceratinae and Aspidoceratinae (Aspidoceras and Pseudowaagenia) are created by the succession of sigmoid lamellae of the organic periostracum or of the outer prismatic layer, respectively. Each lira has a characteristic adorally‐projecting, scythe‐like appendage, arising from its crest. The prismatic lirae of Aspidoceras and Pseudowaagenia are analogous to the larger scaled pseudoribs of Cymatoceras. Garland‐like lamellae of the outer prismatic layer form the radial lirae of Mirosphinctes and Epaspidoceras (Aspidoceratinae), but these lack a conspicuous, projecting scythe‐like appendage. Additional prismatic cement is formed within adoral, oval hollow spaces of scythe‐appendage‐bearing lirae, either through diagenetic crystal growth, remote biomineralization or as a component of the dorsal shell. In Aspidoceratinae these prismatic infillings are replaced by a continuous herringbone layer, accompanied by a reduction of the lirae.  相似文献   

2.
Unionid shells are characterized by an outer aragonitic prismatic layer and an inner nacreous layer. The prisms of the outer shell layer are composed of single-crystal fibres radiating from spheruliths. During prism development, fibres progressively recline to the growth front. There is competition between prisms, leading to the selection of bigger, evenly sized prisms. A new model explains this competition process between prisms, using fibres as elementary units of competition. Scanning electron microscopy and X-ray texture analysis show that, during prism growth, fibres become progressively orientated with their three crystallographic axes aligned, which results from geometric constraints and space limitations. Interestingly transition to the nacreous layer does not occur until a high degree of orientation of fibres is attained. There is no selection of crystal orientation in the nacreous layer and, as a result, the preferential orientation of crystals deteriorates. Deterioration of crystal orientation is most probably due to accumulation of errors as the epitaxial growth is suppressed by thick or continuous organic coats on some nacre crystals. In conclusion, the microstructural arrangement of the unionid shell is, to a large extent, self-organized with the main constraints being crystallographic and geometrical laws.  相似文献   

3.
The shells of most anomalodesmatan bivalves are composed of an outer aragonitic layer of either granular or columnar prismatic microstructure, and an inner layer of nacre. The Thraciidae is one of the few anomalodesmatan families whose members lack nacreous layers. In particular, shells of members of the genus Thracia are exceptional in their possession of a very distinctive but previously unreported microstructure, which we term herein “dendritic prisms.” Dendritic prisms consist of slender fibers of aragonite which radiate perpendicular to, and which stack along, the axis of the prism. Here we used scanning and transmission electron microscopical investigation of the periostracum, mantle, and shells of three species of Thracia to reconstruct the mode of shell calcification and to unravel the crystallography of the dendritic units. The periostracum is composed of an outer dark layer and an inner translucent layer. During the free periostracum phase the dark layer grows at the expense of the translucent layer, but at the position of the shell edge, the translucent layer mineralizes with the units typical of the dendritic prismatic layer. Within each unit, the c‐axis is oriented along the prismatic axis, whereas the a‐axis of aragonite runs parallel to the long axis of the fibers. The six‐rayed alignment of the latter implies that prisms are formed by {110} polycyclically twinned crystals. We conclude that, despite its distinctive appearance, the dendritic prismatic layer of the shell of Thracia spp. is homologous to the outer granular prismatic or prismatic layer of other anomalodesmatans, while the nacreous layer present in most anomalodesmatans has been suppressed.  相似文献   

4.
Checa A 《Tissue & cell》2000,32(5):405-416
The periostracum in Unionidae consists of two layers. The outer one is secreted within the periostracal groove, while the inner layer is secreted by the epithelium of the outer mantle fold. The periostracum reaches its maximum thickness at the shell edge, where it reflects onto the shell surface. Biomineralization begins within the inner periostracum as fibrous spheruliths, which grow towards the shell interior, coalesce and compete mutually, originating the aragonitic outer prismatic shell layer. Prisms are fibrous polycrystalline aggregates. Internal growth lines indicate that their growth front is limited by the mantle surface. Transition to nacre is gradual. The first nacreous tablets grow by epitaxy onto the distal ends of prism fibres. Later growth proceeds onto previously deposited tablets. Our model involves two alternative stages. During active shell secretion, the mantle edge extends to fill the extrapallial space and the periostracal conveyor belt switches on, with the consequential secretion of periostracum and shell. During periods of inactivity, only the outer periostracum is secreted; this forms folds at the exit of the periostracal groove, leaving high-rank growth lines. Layers of inner periostracum are added occasionally to the shell interior during prolonged periods of inactivity in which the mantle is retracted.  相似文献   

5.
The nacreous tablets in the Nautilus shell have similar crystalline structure as the tablets in the gastropod Gibbula shell. Etching with Mutvei’s solution reveals that each tablet is composed of vertical crystalline columns that are structurally similar to the acicular crystallites in the outer spherulitic-prismatic layer of the shell wall. The columns are attached to each other to form numerous vertical crystalline lamellae, oriented parallel to the longitudinal axis of the tablet. It is still unknown whether or not the orientation of the vertical lamellae corresponds to that of the crystallographic a- or b-axis. The orientation of the crystalline lamellae in the adjacent tablets is parallel in some nacreous laminae, but random in other laminae. Similar large variation was found in the nacreous tablets of the gastropod and bivalve shells. The nucleation sites of the nacreous tablets are predominantly situated on the peripheral portion of the upper surface of the preceding tablet, both in the shell wall and septa. The “aragonite-nucleating proteins” in the central portion of the crystal imprints of the organic interlamellar sheets, described by several writers, have therefore a negative correlation with the nucleation sites of the nacreous tablets.  相似文献   

6.
几丁质是软体动物贝壳有机框架的重要成分,其代谢在贝壳矿化中发挥重要作用。β-N-乙酰-己糖胺酶(HEX, EC3.2.1.52)是几丁质代谢的关键水解酶。为了探究马氏珠母贝β-N-乙酰-己糖胺酶(Pm HEX)(登录号:MF555152)在贝壳形成中的作用,本研究利用原位杂交(ISH)技术检测Pm HEX基因在外套膜的定位,结果显示Pm HEX的mRNA主要分布于外侧褶的外上皮细胞、中褶的内侧上皮细胞和内褶上皮细胞。利用RNAi技术抑制Pm HEX表达后,Pm HEX在边缘区和套膜区的表达量均显著下调;SEM观察发现实验组的棱柱层和珍珠层的微观结构都出现不同程度的紊乱。综上所述,Pm HEX可能通过影响几丁质代谢,参与马氏珠母贝贝壳棱柱层和珍珠层的矿化过程。  相似文献   

7.
冯伟民 《古生物学报》1994,33(5):635-645
腹足类个体发育中壳质结构的重要特点是壳质层的微观变化,包括原有壳质层的增厚、增生与上覆超微结构相同的壳质层、增生新的超微结构层、壳质层的相互消长与显微结构的演变。壳质层的微观变化决定了壳饰形成的4种类型:增厚型、刺顶型、刺穿型、叠覆型。叠覆的交错片体具加强贝壳抗破裂功能;交错片体排列方式的变化或新的显微结构层的出现均具分类意义。交错针状结构源于纤柱结构,纤柱结构又由简单柱状结构演变而来。  相似文献   

8.
9.
The scanning electron microscope has been used to describe the morphology of the mature shell in a fresh-water bivalve. The structure of the organic and inorganic components within the nacre, the myostracum, and the prismatic layer is described. A transitional or intermediate zone, interposed between the prismatic layer and the nacre, was identified. In demineralized samples, the organic component of the nacre was found to consist of parallel matricial sheets interconnected by irregular transverse bridges. The structure of the mineral component of the nacre was found to vary with the method of specimen preparation. With polished-etched samples, brick-like units were seen. When shells were simply broken and fixed in osmium, the layers of nacreous material consisted of fusing rhomboidal crystals of aragonite which demonstrated subconchoidal fractures. On the inner surface of the shell, the rhomboidal crystals showed an apparent spiral growth pattern. The myostracum was characterized by regions of modified nacreous structure consisting of enlarged aragonite crystals with a pyramidal morphology. The peripheral aspect of the muscle scars was characterized by rhomboidal crystals, the latter fusing to form the typical nacreous laminae. The uniqueness of the anterior adductor scar is exemplified by the presence of pores, each pore walled by pyramidal units, for the insertion of adductor fibres. In most regions of the shell, the prismatic layer consisted of one prism unit thickness with a height of approximately 225–250 μm. However, in two specialized regions of the shell, this layer was seen to consist of multiple layers of stacked prisms. The organic matrices of the prismatic layer are arranged in a honeycomb-like arrangement and packed with mineralized spherical subunits.  相似文献   

10.
We report a unique shell margin that differed from the usual shell structure of Pinctada fucata. We observed empty organic envelopes in the prismatic layer and the formation of the nacreous layer in the shell margin. All the characteristics of the growing margin indicated that the shell was growing rapidly. To explain this anomaly, we propose the concept of “jumping development”. During jumping development, the center of growth in the bivalve shell jumps forward over a short time interval when the position of the mantle changes. Jumping development explains the unusual structure of the anomalous shell and the development of annual growth lines in typical shells. Annual growth lines are the result of a discontinuity in the shell microstructure induced by jumping development.  相似文献   

11.
The shell of the Japanese pearl oyster, Pinctada fucata, consists of two layers, the prismatic layer on the outside and the nacreous layer on the inside, both of which comprise calcium carbonate and organic matrices. Previous studies indicate that the nacreous organic matrix of the central layer of the framework surrounding the aragonite tablet is beta-chitin, but it remains unknown whether organic matrices in the prismatic layer contain chitin or not. In the present study, we identified chitin in the prismatic layer of the Japanese pearl oyster, Pinctada fucata, with a combination of Calcofluor White staining with IR and NMR spectral analyses. Furthermore, we cloned a cDNA encoding chitin synthase (PfCHS1) that produces chitin, contributing to the formation of the framework for calcification in the shell.  相似文献   

12.
Growth performance of the Antarctic bivalve Laternula elliptica was examined both by shell microstructural observation and by applying a fluorescent substance, tetracycline, as a shell growth marker. The shell was composed of two calcareous layers: the thick outer layer was homogeneous or granular in structure and the thin inner layer was nacreous. The architecture of Antarctic L. elliptica was different from that of temperate L. marilina, and the ratio of thickness between the outer and inner layers appeared to be different. The growth rate of the nacreous layer was analyzed to be very low. High correlations were found between the major axis of chondrophore and both shell length and shell dry weight, respectively. It is suggested that the chondrophore is an appropriate growth indicator, and combining the information of growth increments with the fluorescent method may be useful in estimating the bivalve growth performance in the Antarctic sea.  相似文献   

13.
褶纹冠蚌光珠与骨珠珍珠囊差异的研究   总被引:7,自引:0,他引:7  
运用多种组织化学方法和电镜技术研究了褶纹冠蚌光珠和骨珠珍珠囊表皮细胞的形态结构、分泌物性质和功能等方面的差异。结果表明:骨珠珍珠囊表皮细胞合成和分泌珍珠前体物质的能力较光珠的强,故骨珠的形成速度比光珠快;光珠和骨珠珍珠囊表皮细胞合成和分泌的蛋白质的差异决定了光珠和骨珠的形成;光珠和骨珠珍珠囊表皮细胞的形态结构特征差异可作为检验和预测人工培育珍珠质量的细胞学标准。  相似文献   

14.
Samples of the unionid bivalve Elliptio complanata were collected from the channel of the freshwater Saint John River, from Fredericton, New Brunswick, Canada. Scanning electron microscopy imaging of prepared shell samples revealed an assemblage of microborings. No borings are noted on the periostracum or prismatic shell layers. Boring structures are instead confined to the underlying nacreous aragonitic shell material, together with its associated organic conchiolin layers. Three main styles of boring are encountered, encompassing both predominantly surficial structures and penetrative tubular borings. Surficial structures are represented by a polygonal network on an exposed conchiolin shell layer. The penetrative borings take two forms, one being simple unbranched tubes, steeply aligned (perpendicular to the shell surface) and traversing the full thickness of the nacreous shell layer. The other penetrative boring style, again occurring within the nacreous layer, comprises a complex irregular network of randomly oriented rarely branching tubular borings. Borings generally display diameters of micron scale. Biofilm and extracellular polymeric substances, with bacterial, diatomaceous and filamentous components are also observed, often displaying a close association with both the borings and the conchiolin layers within the shell. The formation of the borings may be attributed to cyanobacteria, cyanophyte or fungal progenitors.  相似文献   

15.
Understanding the molecular composition is of great interest for both nacre formation mechanism and biomineralization in mollusk shell. A cDNA clone encoding an MSI31 relative, termed MSI7 because of its estimated molecular mass of 7.3 kDa, was isolated from the pearl oyster, Pinctada fucata. This novel protein shares similarity with MSI31, a prismatic framework protein of P. fucata. It is peculiar that MSI7 is much shorter in size, harboring only the Gly-rich sequence that has been proposed to be critical for Ca(2+) binding. In situ hybridization result showed that MSI7 mRNA was expressed specifically at the folds and outer epithelia of the mantle, indicating that MSI7 participates in the framework formation of both the nacreous layer and prismatic layer. In vitro experiment on the function of MSI7 suggested that it accelerates the nucleation and precipitation of CaCO(3). Taken together, we have identified a novel matrix protein of the pearl oyster, which may play an important role in determining the texture of nacre.  相似文献   

16.
The fine structure of the shell and underlying mantle in young juveniles of the articulate brachiopod Terebratalia transversa has been examined by electron microscopy. The first shell produced by the mantle consists of a nonhinged protegulum that lacks concentric growth lines. The protegulum is secreted within a day after larval metamorphosis and typically measures 140-150 micron long. A thin organic periostracum constitutes the outer layer of the protegulum, and finely granular shell material occurs beneath the periostracum. Protegula resist digestion in sodium hypochlorite and are refractory to sectioning, suggesting that the subperiostracal portion of the primordial shell is mineralized. The juvenile shell at 4 days postmetamorphosis possesses incomplete sockets and rudimentary teeth that consist of nonfibrous material. The secondary layer occuring in the inner part of the juvenile shell contains imbricated fibers, whereas the outer portion of the shell comprises a bipartite periostracum and an underlying primary layer of nonfibrous shell. Deposition of the periostracum takes place within a slot that is situated between the so-called lobate and vesicular cells of the outer mantle lobe. Vesicular cells deposit the basal layer of the periostracum, while lobate cells contribute materials to the overlying periostracal superstructure. Cells with numerous tonofibrils and hemidesmosomes differentiate in the outer mantle epithelium at sites of muscle attachments, and unbranched punctae that surround mantle caeca develop throughout the subperiostracal portion of the shell. Three weeks after metamorphosis, the juvenile shell averages about 320 micron in length and is similar in ultrastructure to the shells secreted by adult articulates.  相似文献   

17.
18.
The functional morphology of shell infrastructure in 2 speciesof intertidal trochid was compared with that in 2 species ofnerite. The shell of Monodonta constrictais typical of the majorityof trochids. The shell is composed of 4 layers: a distal layer(calcite), anouter prismatic layer (aragonite), a nacreous layer(aragonite), and an oblique prismatic layer (aragonite). Monodontalabio lacks a distal layer and an oblique prismatic layer. Theoblique prismatic layer is replaced by an inner prismatic layerwhich forms an apertural ridge as a result of deposition andresorption. The shells of Nerita versicolor and N. tessellataconsistof 3 layers: an outer prismatic layer (calcite), a crossedlamellar layer (aragonite), and a complex crossed lamellar layer(aragonite). The complex crossed lamellar layer is covered withinclined platelets which superficially resemble the surfaceof the ique prismatic layer of trochids. In addition, the complexcrossed lamellar layer forms an apertural ridge which is similarin appearance to that of Monodonta labio. The outer surfaceof the mantle of Nerita versicolor and N. tessellata is throwninto a series of large folds which lie in contact with the inclinedplatelets of the omplex crossed lamellar layer. The interactionof the mantle folds with the inclined platelets is thought toserve as a rachet mechanism to aid in extension of themantle;a similar function has previously been proposed for trochids.The apertural ridges of Monodonta labio and Nerita are thoughtto prevent excessive desiccation when these gastropodsare exposedat low tide. 1Contribution No. 56 of the Tallahassee, Sopchoppy & GulfCoast Marine Biological Association (Received 6 July 1979;  相似文献   

19.
The present study in the embryo of the lizard Anolis lineatopus describes the modality of cell proliferation responsible for the morphogenesis of the digital pad lamellae and of the epidermal stratification. After tritiated thymidine and 5-bromodeoxy-uridine administration, autoradiographic and immunocytochemical methods have been used. The lamellae originate as long, slightly slanted, undulations of the epidermis of fingers and toes. At an early stage, the epidermis consists of an outer periderm and a basal layer. Cell hypertrophy, and the prevalent cell proliferation in the longer side of the undulation with respect to the shorter side, generate the surface of the outer lamella. Under the peridermis, a shedding complex, composed by clear and oberhautchen layers, is formed and later determines the first intraepidermal shed. The first subperidermal layer derived from the basal layer is a clear layer and the first shed epidermis in the embryo is represented by periderm and clear layer. The heavily granulated clear layer in Anolis lineatopus represents the first epidermal layer produced in the embryonic epidermis, and is connected with the process of shedding. The spinulae of the underlying oberhautchen in the outer scale surface become long setae which grow toward the upper clear layer. Under the shedding complex a β-layer is produced. Autoradiographical study shows that the radioactivity stays in the basal layer for about 4 days before cells move to upper layers. At 6–8 days post-injection labelled cells are visible in the differentiated clear, oberhautchen and β-layers. Under the β-layer differentiating mesos cells are visible before the embryo hatches.  相似文献   

20.
The purpose of this study was to investigate shell growth performance in two thin-shelled pelagic gastropods from cold seawater habitats. The shells of Arctic Limacina helicina and Antarctic Limacina helicina antarctica forma antarctica are very thin, approximately 2–9 μm for shells of 0.5–6 mm in diameter. Many axial ribbed growth lines were observed on the surface of the shell of both Limacina species. Distinct axial ribs were observed on the outermost whorl, while weak or no rib-like structures were observed on the inner whorls in the larger shell of L. helicina antarctica forma antarctica. For L. helicina, no ribs were observed on small individuals with three whorls, while larger individuals had distinct ribs on the outer whorls. Shell microstructure was examined in both species. There is an inner crossed-lamellar and extremely thin outer prismatic layer in small individuals of both species, and a distinct thick inner prismatic layer was observed beneath the crossed-lamellar layer in large Antarctic individuals. Various orientations of the crossed-lamellar structure were observed in one individual. Shell structure appeared to be different between the Antarctic and Arctic species and among shells of different size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号