首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5'-p-Fluorosulfonylbenzoyl adenosine (FSBA), a nucleotide analog of ADP, has been shown to inhibit ADP-induced shape change, aggregation and exposure of fibrinogen binding sites concomitant with covalent modification of a single surface membrane polypeptide of Mr 100,000 (aggregin). Since thrombin can aggregate platelets which have been modified by FSBA and are refractory to ADP, we tested the hypothesis that thrombin-induced platelet aggregation might involve cleavage of aggregin. At a low concentration of thrombin (0.05 U/ml), platelet aggregation, exposure of fibrinogen receptors and cleavage of aggregin in FSBA-modified platelets did not occur, indicating ADP dependence. In contrast, incubation of [3H]FSBA-labeled intact platelets with a higher concentration of thrombin (0.2 U/ml) resulted in cleavage of radiolabeled aggregin, aggregation, and exposure of fibrinogen binding sites. Under identical conditions, aggregin in membranes isolated from [3H]FSBA-labeled platelets was not cleaved by thrombin. Thrombin-induced platelet aggregation and cleavage of aggregin were concomitantly inhibited by a mixture of 2-deoxy-D-glucose, D-gluconic acid 1,5-lactone, and antimycin A. These results suggest that thrombin cleaves aggregin indirectly by activating an endogeneous protease. Thrombin is known to elevate intracellular Ca2+ concentration and thereby activates intracellular calcium dependent thiol proteases (calpains). In contrast to serine protease inhibitors, calpain inhibitors including leupeptin, antipain, and ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (chelator of Ca2+) inhibited platelet aggregation and cleavage of aggregin in [3H]FSBA-labeled platelets. Leupeptin, at a concentration of 10-20 microM, used in these experiments, did not inhibit the amidolytic activity of thrombin, thrombin-induced platelet shape change, or the rise in intracellular Ca2+. Purified platelet calpain II caused aggregation of unmodified and FSBA-modified platelets and cleaved aggregin in [3H]FSBA-labeled platelets as well as in isolated membranes. The latter is in marked contrast to the action of thrombin on [3H]FSBA-labeled membranes. Thus, thrombin-induced platelet aggregation may involve intracellular activation of calpain which proteolytically cleaves aggregin thus unmasking latent fibrinogen receptors, a necessary prerequisite for platelet aggregation.  相似文献   

2.
Nitric oxide and platelet energy metabolism   总被引:3,自引:0,他引:3  
This study was undertaken to determine whether nitric oxide (NO) can affect platelet responses through the inhibition of energy production. It was found that NO donors: S-nitroso-N-acetylpenicyllamine, SNAP, (5-50 microM) and sodium nitroprusside, SNP, (5-100 microM) inhibited collagen- and ADP-induced aggregation of porcine platelets. The corresponding IC50 values for SNAP and SNP varied from 5 to 30 microM and from 9 to 75 microM, respectively. Collagen- and thrombin-induced platelet secretion was inhibited by SNAP (IC50 = 50 microM) and by SNP (IC50 = 100 microM). SNAP (20-100 microM), SNP (10-200 microM) and collagen (20 microg/ml) stimulated glycolysis in intact platelets. The degree of glycolysis stimulation exerted by NO donors was similar to that produced by respiratory chain inhibitors (cyanide and antimycin A) or uncouplers (2,4-dinitrophenol). Neither the NO donors nor the respiratory chain blockers affected glycolysis in platelet homogenate. SNAP (20-100 microM) and SNP (50-200 microM) inhibited oxygen consumption by platelets. The effect of SNP and SNAP on glycolysis and respiration was not reduced by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, a selective inhibitor of NO-stimulated guanylate cyclase. SNAP (5-100 microM) and SNP (10-300 microM) inhibited the activity of platelet cytochrome oxidase and had no effect on NADH:ubiquinone oxidoreductase and succinate dehydrogenase. Blocking of the mitochondrial energy production by antimycin A slightly affected collagen-evoked aggregation and strongly inhibited platelet secretion. The results indicate that: 1) in porcine platelets NO is able to diminish mitochondrial energy production through the inhibition of cytochrome oxidase, 2) the inhibitory effect of NO on platelet secretion (but not aggregation) can be attributed to the reduction of mitochondrial energy production.  相似文献   

3.
We examined the involvement of cAMP-dependent protein kinase (A kinase)2 in the inhibition by cilostamide, a specific inhibitor of the low Km cAMP-phosphodiesterase (PDE), on 9,11-epithio-11,12-methanothromboxane A2 (STA2)-induced platelet aggregation. For comparative purposes, the PGE1 analogue, 17S-20-dimethyl-trans-delta 2-PGE1 (OP-1206) was used. OP-1206 (IC50 = 18 +/- 0.55 nM) and cilostamide (IC50 = 40 +/- 4.5 nM) were both potent inhibitors of the platelet aggregation induced by STA2 (1 microM). OP-1206 and cilostamide dose-dependently inhibited elevations in intracellular free Ca2+ ([Ca2+]i) caused by STA2. OP-1206 caused an almost complete inhibition of Ca2+ mobilization, but cilostamide did not prevent the STA2-induced elevation in [Ca2+]i to the same extent as OP-1206, even at a high concentration (greater than 200 nM). Cilostamide did not increase the cAMP level at concentrations (5-100 nm) which affected STA2-induced aggregation. OP-1206 significantly increased cAMP contents in platelets, and the degree of aggregation inhibition by OP-1206 appears to be related to the size of increase in cAMP. OP-1206 increased phosphorylation of the 50,000 mol. wt vasodilator-stimulated phosphoprotein, at concentrations of 7.9-79 nM, which inhibited aggregation induced by STA2. Cilostamide treatment resulted in a marginal increase in the 50,000 mol. wt phosphorylation at concentrations (10-100 nM) which completely inhibited the STA2-induced aggregation. (8R*, 9S*, 11S*)-(-)-9-Hydroxy-9-n-hexyloxy-8-methyl-2,3,9,10- tetrahydro-8,11-epoxy-1H, 8H, 11H-2, 7b, 11a-triazadibenzo(a,g)-cycloocta(c,d,e)trinden-1-one (KT-5720), a specific inhibitor of A kinase, not only reversed the inhibition by OP-1206 of STA2-induced platelet aggregation, but also inhibited the OP-1206-induced protein phosphorylation. However, the inhibition by cilostamide of STA2-induced aggregation was not prevented by pretreatment with KT-5720. Inhibition of the STA2-induced aggregation by OP-1206 may be associated with cAMP-dependent protein phosphorylation, while cilostamide may have inhibitory effects on STA2-induced platelet activation through mechanisms other than the activation of A kinase.  相似文献   

4.
The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium   总被引:25,自引:0,他引:25  
The inhibition of platelet adhesion by nitric oxide (NO) and prostacyclin and their mechanism of action was studied. Platelet adhesion to collagen fibrils and endothelial cell matrix was inhibited completely by NO but only partially by prostacyclin. Adhesion of platelets to endothelial cell monolayers was inhibited by bradykinin. This effect of bradykinin was unaffected by aspirin, and was accounted for by the amounts of NO released by the endothelial cells. Inhibition of platelet adhesion by NO and prostacyclin was potentiated by selective inhibitors of cGMP phosphodiesterase, but not of cAMP phosphodiesterase, indicating that elevation of cGMP regulates platelet adhesion.  相似文献   

5.
Recently, AGEPC (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) was found to initiate contraction of ileal smooth muscle strips and to enhance Na+/Ca2+ exchange in ileal plasmalemmal vesicles. In the present study, the effects of the smooth muscle relaxant, isoproterenol, on Na+/Ca2+ exchange in rat ileal plasmalemmal vesicles was examined. In this preparation, Na+/Ca2+ exchange was stimulated 131 +/- 8% and 264 +/- 19% by addition of 50 nM and 100 nM AGEPC, respectively. Isoproterenol, a beta-adrenergic agonist, inhibited AGEPC stimulation of Na+/Ca2+ exchange in a dose- and time-dependent manner but had no effect on basal rates of Na+/Ca2+ antiport. At 1 microM, isoproterenol inhibited 86% of the Na+/Ca2+ exchange stimulated by 50 nM AGEPC. Vesicular cAMP levels were increased over 100% following the addition of 1 microM isoproterenol for 30 s. Inhibition of AGEPC-stimulated vesicular Na+/Ca2+ exchange and elevation of vesicular cAMP levels by isoproterenol was prevented by the beta-receptor antagonist propranolol (5 microM), demonstrating that these effects of isoproterenol were mediated by interaction with vesicular beta-adrenergic receptors. Additional studies with washed rabbit platelets demonstrated that isoproterenol inhibited AGEPC-induced aggregation and serotonin release. These effects of isoproterenol were dose- and time-dependent and were antagonized by propranolol. Isoproterenol had no effect on thrombin-induced aggregation and did not change appreciably platelet cAMP levels. Moreover, dibutyryl cAMP could not mimic the effect of isoproterenol to inhibit an AGEPC-induced aggregation. On a molar basis, the inhibitory effects of isoproterenol toward AGEPC action were greater in the ileal preparation than in the platelets. It is suggested that beta-adrenergic agonists may modulate AGEPC-induced ileal Na+/Ca2+ exchange and AGEPC-induced platelet aggregation through cAMP-dependent and-independent mechanisms, respectively.  相似文献   

6.
Stimulated human blood platelets release thrombospondin, an alpha-granule glycoprotein of 450 kDa. The aim of this work was to characterize an anti-thrombospondin monoclonal antibody (P8) in order to study the role of thrombospondin in platelet functions. The presence of thrombospondin receptor sites on resting and thrombin-stimulated platelets of three Glanzmann's thrombasthenia patients and normal donors was investigated using the P8 monoclonal antibody. Monoclonal antibody P8 was extensively characterized using ELISA, immunoprecipitation, immunoadsorbent affinity chromatography combined with tryptic peptide map analysis and crossed immunoelectrophoretic techniques. Labelled P8 bound strongly to thrombin-stimulated normal platelets (n = 14917 +/- 420, mean +/- SD) (Kd = 9.2 +/- 3.0 nM) and poorly to resting platelets (n = 2697 +/- 1278) (Kd = 24.8 +/- 18.6 nM). Moreover, the number of binding sites for P8 on thrombin-stimulated platelets from three Glanzmann's thrombasthenia patients, lacking the IIb-IIIa glycoprotein complex, were found similar to normal samples. F(ab')2 fragments of P8 inhibited aggregation of, and reduced secretion from, washed platelets stimulated by low concentrations of thrombin (0.05-0.06 U/ml) and collagen (0.5-0.6 microgram/ml). F(ab')2 fragments of P8 inhibited thrombin-induced platelet aggregation, but did not reduce fibrinogen binding (n) nor affect its dissociation constant (Kd). Inhibition of platelet aggregation by P8 suggests that thrombospondin plays an active role in promoting platelet aggregation, at low concentrations of thrombin and collagen. Normal binding of P8 to thrombin-stimulated Glanzmann thrombasthenic platelets indicates the presence of a thrombospondin receptor on the platelet surface distinct from the GPIIb-IIIa complex.  相似文献   

7.
Effects of Welsh onion extracts on human platelet function in vitro   总被引:3,自引:0,他引:3  
Chen JH  Chen HI  Wang JS  Tsai SJ  Jen CJ 《Life sciences》2000,66(17):1571-1579
Welsh onion has been consumed for prevention of cardiovascular disorders. However, its underlying mechanisms are still unclear. This study investigated whether Welsh onion extracts can alter human platelet function (ie, platelet adhesion, aggregation, and thromboxane release). To clarify the underlying mechanisms, we also measured the intracellular calcium ([Ca2+]i) and cyclic nucleotide levels in platelets. Our results showed that 1) boiled extracts directly induced platelet aggregation in a dose-dependent manner; 2) raw extracts inhibited platelet adhesion and ADP-evoked platelet aggregation, while boiled extracts enhanced them; 3) raw green extract suppressed ADP-stimulated platelet [Ca2+]i elevation and thromboxane production, whereas boiled green extract enhanced them; 4) raw green extract elevated platelet cAMP level, whereas boiled green extract had no effect on cAMP level. Furthermore, the boiled green extract, but not the raw extract, induced pronounced platelet morphological changes. In conclusion, raw extracts of Welsh onion inhibit platelet function in vitro while boiled extracts activate platelets.  相似文献   

8.
Variceal bleeding due to abnormal platelet function is a well-known complication of cirrhosis. Nitric oxide-related stress has been implicated in the pathogenesis of liver cirrhosis.In the present investigation,we evaluated the level of platelet aggregation and concomitant changes in the level of platelet cytosolic calcium (Ca2+), nitric oxide (NO) and NO synthase (NOS) activity in liver cirrhosis.The aim of the present study was to investigate whether the production of NO by NOS and level of cytosolic Ca2+ influence the aggregation of platelets in patients with cirrhosis of the liver.Agonist-induced aggregation and the simultaneous changes in the level of cytosolic Ca2+, NO and NOS were monitored in platelets of patients with cirrhosis.Platelet aggregation was also measured in the presence of the eNOS inhibitor,diphenylene iodinium chloride (DIC).The level of agonist-induced platelet aggregation was significantly low in the platelets of patients with cirrhosis compared with that in platelets from normal subjects.During the course of platelet aggregation,concomitant elevation in the level of cytosolic Ca2+ was observed in normal samples,whereas the elevation was not significant in platelets of patients with cirrhosis.A parallel increase was observed in the levels of NO and NOS activity.In the presence of the eNOS inhibitor,platelet aggregation was enhanced and accompanied by an elevated calcium level.The inhibition of platelet aggregation in liver cirrhosis might be partly due to greater NO formation by eNOS.Defective Ca2+ release from the internal stores to the cytosol may account for inhibition of aggregation of platelets in cirrhosis.The NO-related defective aggregation of platelets in patients with cirrhosis found in our study is of clinical importance,and the underlying mechanism of such changes suggests a possible therapeutic strategy with cell-specific NO blockers.  相似文献   

9.
Sphingosine 1-phosphate (Sph-1-P) is considered to play a dual role in cellular signaling, acting intercellularly as well as intracellularly. In this study, we examined the role of Sph-1-P as a signaling molecule in human platelets, using DL-threo-dihydrosphingosine (DHS) and N,N-dimethylsphingosine (DMS), inhibitors of Sph kinase and protein kinase C. Both DMS and DL-threo-DHS were confirmed to be competitive inhibitors of Sph kinase obtained from platelet cytoplasmic fractions. In intact platelets labeled with [3H]Sph, stimulation with 12-O-tetradecanoylphorbol 13-acetate or thrombin did not affect [3H]-Sph-1-P formation. While both DMS and DL-threo-DHS inhibited not only [3H]Sph-1-P formation but also protein kinase C-dependent platelet aggregation, staurosporine, a potent protein kinase inhibitor, only inhibited the protein kinase C-dependent reaction. Hence, it is unlikely that Sph kinase activation and the resultant Sph-1-P formation are mediated by protein kinase C in platelets. Furthermore, Ca2+ mobilization induced by platelet agonists that act on G protein-coupled receptor was not affected by DMS or DL-threo-DHS. Our results suggest that Sph-1-P does not mediate intracellular signaling, including Ca2+ mobilization, in platelets.  相似文献   

10.
1. The effect of nitroprusside on cGMP concn., cAMP concn., shape change, aggregation, intracellular free Ca2+ concn. (by quin-2 fluorescence) and Mn2+ entry (by quenching of quin-2) was investigated in human platelets incubated with 1 mM-Ca2+ or 1 mM-EGTA. 2. Nitroprusside (10 nM-10 microM) caused similar concentration-dependent increases in platelet cGMP concn. and was without effect on cAMP concn. in the presence of extracellular Ca2+ or EGTA. 3. In ADP (3-6 microM)-stimulated platelets, nitroprusside caused 50% inhibition of shape change at 0.4 microM (+Ca2+) or 1.3 microM (+EGTA), aggregation at 0.09 microM (+Ca2+) and of increased intracellular Ca2+ at 0.02 microM (+Ca2+) or 2.1 microM (+EGTA). Entry of 1 mM-Mn2+ (-Ca2+) was inhibited by 80% by 5 microM-nitroprusside. 4. In ionomycin (20-500 nM)-stimulated platelets, nitroprusside (10 nM-100 microM) did not inhibit shape change or intracellular-Ca2+-increase responses, and only partially inhibited aggregation. 5. In phorbol myristate acetate (10 nM)-stimulated platelets, neither shape change nor aggregation was inhibited by 5 microM-nitroprusside. 6. The data demonstrate that nitroprusside inhibits ADP-mediated Ca2+ influx more potently than Ca2+ mobilization. Nitroprusside appears not to influence Ca2+ efflux or sequestration and not to affect the sensitivity of the activation mechanism to intracellular Ca2+ concn. or activation of protein kinase C.  相似文献   

11.
The effect of ultraviolet radiation on the thrombin-stimulated aggregation of washed pig platelets was studied. It was observed that UV radiation (UV-A, 0.5 W/cm2) inhibited aggregation of pig platelets induced by thrombin. Plasma may have a protective role against the damaging effect of UV light on platelet aggregation.  相似文献   

12.
Once platelets are activated, the first event to occur is a rapid change in shape, associated with Ca2+/calmodulin-dependent myosin light chain (MLC) phosphorylation and with Rho kinase activation. The purpose of this study was to investigate which is the biochemical pathway that leads to platelet shape change in response to convulxin, a selective GpVI activator, and to verify whether MLC phosphorylation is essential for this process. The inhibition of the Ca2+-dependent pathway by means of the Ca2+ chelator BAPTA, the Ca2+/calmodulin inhibitor W-7 or the cAMP enhancing drug iloprost reduced about 50% of platelet shape change in response to convulxin. The treatment with either the Rho kinase inhibitors Y27632 or HA 1077 had no effect on platelet shape change induced by convulxin. When both Ca2+/calmodulin-dependent and Rho kinase-dependent pathways were concomitantly inhibited by the combined use of Y27632 plus BAPTA, W-7 or iloprost, platelet shape change was completely abolished. Our findings suggest that convulxin-induced platelet shape change occurs via both pathways, the Ca2+/calmodulin-dependent, which appears to be more important, and the Rho kinase-dependent one. The pattern of MLC phosphorylation was not modified by Rho kinase inhibitors. Conversely, the inhibition of the Ca2+-dependent pathway caused a strong reduction of MLC phosphorylation in BAPTA-treated platelets, and a total inhibition in W-7 or iloprost-treated platelets. Our results demonstrate that following Rho kinase-dependent pathway platelet shape change can occur without the involvement of MLC phosphorylation.  相似文献   

13.
We compared several responses in thrombin-stimulated and collagen (type I)-stimulated platelets with and without forskolin and inhibitors of autocrine stimulation (IAS: an ADP-removing system of creatine phosphate/creatine phosphokinase, Arg-Gly-Asp-Ser peptide to prevent fibrinogen/fibronectin binding to GPIIb/IIIa, SQ 29.548 as a thromboxane A2 receptor antagonist, cyproheptadine as a serotonin receptor antagonist, BN 52021 as a platelet-activating factor receptor antagonist). The pattern of tyrosine-phosphorylated proteins, the phosphorylation of lipids in the polyphosphoinositide cycle and phosphorylation of pleckstrin (P47) were studied as markers for signal-transducing responses, exposure of CD62 (P-selectin) and CD63 (Glycoprotein 53), as well as secretion of ADP + ATP and beta-N-acetyl-glycosaminidase were studied as final activation responses. Clear differences between thrombin-stimulated and collagen-stimulated platelets were observed. First, practically all protein-tyrosine phosphorylation induced by thrombin was inhibited by IAS, while a partial inhibition was observed for collagen; the phosphorylation due to collagen alone was apparently stimulated by elevation of cAMP. Secondly, the other responses to thrombin were inhibited by increased levels of cAMP, independent of autocrine stimulation. In contrast, only the autocrine part of the collagen-induced responses was inhibited by elevation of cAMP. Thus, the inhibition by elevated cAMP seen in collagen-stimulated platelets seems to be due to removal of the G-protein-mediated activation from secreted autocrine stimulators either by IAS or forskolin. The remaining activity is a pure collagen effect which is not affected by elevated levels of cAMP.  相似文献   

14.
Noradrenaline (NA) stimulated the release of arachidonic acid (AA) from the [3H]AA-labelled rabbit platelets via alpha 2-adrenergic receptors, since the effect of NA was inhibited by yohimbine. The stimulatory effect of NA in digitonin-permeabilized platelets was completely dependent on the simultaneous presence of GTP and Ca2+. The NA- and thrombin-stimulated releases of AA were markedly decreased by the prior ADP-ribosylation of the permeabilized platelets with pertussis toxin. Antiserum directed against the pig brain Go (a GTP-binding protein of unknown function), recognizing both alpha 39 and beta 35,36 subunits, but not alpha 41, of pig brain, reacted with 41 kDa and 40 kDa bands, with not one of 39 kDa, in rabbit platelet membranes. Anti-Go antiserum inhibited guanosine 5'-[gamma-thio]triphosphate-, A1F4(-)-, NA- and thrombin-stimulated AA releases in the membranes. Although the effect of thrombin was inhibited by low concentrations of anti-Go antiserum, high concentrations of the antiserum was needed for inhibition of the NA effect. Antiserum directed against the pig brain G1 (inhibitory G-protein), recognizing both alpha 41 and beta 35,36 subunits, but not alpha 39, of pig brain, reacted with the 41 kDa band in platelets. Anti-G1 antiserum inhibited only the effect of NA. Reconstitution of the platelet membranes ADP-ribosylated by pertussis toxin with Go, not Gi, purified from pig brain restored the thrombin-stimulated release of AA. In contrast, reconstitution of those membranes with Gi, not Go, restored the NA-stimulated release of AA. These results indicate that different GTP-binding proteins, Gi- and Go-like proteins, may be involved in the mechanism of signal transduction from alpha 2-adrenergic receptors and thrombin receptors to phospholipase A2 in rabbit platelets.  相似文献   

15.
Extracts from the leaves of the Ginkgo biloba are becoming increasingly popular as a treatment that is claimed to reduce atherosclerosis, coronary artery disease, and thrombosis. In this study, the effect of ginkgolide B (GB) from Ginkgo biloba leaves in collagen (10 microg/ml)- stimulated platelet aggregation was investigated. It has been known that human platelets release matrix metalloproteinase- 9 (MMP-9), and that it significantly inhibited platelet aggregation stimulated by collagen. Zymographic analysis confirmed that pro-MMP-9 (92-kDa) was activated by GB to form an MMP-9 (86-kDa) on gelatinolytic activities. And then, activated MMP-9 by GB dose-dependently inhibited platelet aggregation, intracellular Ca2+ mobilization, and thromboxane A2 (TXA2) formation in collagen-stimulated platelets. Activated MMP-9 by GB directly affects down-regulations of cyclooxygenase-1 (COX-1) or TXA2 synthase in a cell free system. In addition, activated MMP-9 significantly increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have the anti-platelet function in resting and collagen-stimulated platelets. Therefore, we suggest that activated MMP-9 by GB may increase the intracellular cAMP and cGMP production, inhibit the intracellular Ca2+ mobilization and TXA2 production, thereby leading to inhibition of platelet aggregation. These results strongly indicate that activated MMP-9 is a potent inhibitor of collagen-stimulated platelet aggregation. It may act a crucial role as a negative regulator during platelet activation.  相似文献   

16.
The effects of U46619, a thromboxane mimic, on cytosolic Ca2+ concentration and platelet aggregation were determined in human platelets. Cytosolic Ca2+ concentration was determined by Quin-2 fluorescence and platelet aggregation quantitated with an aggregometer. Addition of U46619 (1 x 10(-7) M) to the platelet suspension produced a rapid increase in cytosolic Ca2+ and platelet aggregation. Pretreatment of platelets with EGTA (3 x 10(-3) M), verapamil (5 x 10(-4) M), a calcium entry blocker, or 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride (1 x 10(-3) M), an inhibitor of intracellular Ca2+ release, either blunted or markedly delayed the rate, but not the magnitude, of increase in cytosolic Ca2+ and prevented platelet aggregation by U46619. Pretreatment of platelets with prostaglandin I2 (PGI2) (5 x 10(-8) M), PGD2 (5 x 10(-8) M), PGE1 (5 x 10(-8) M), PGF2 alpha (1 x 10(-5) M), dibutyryl cAMP (5 x 10(-3) M), or forskolin (1 x 10(-6) M) prevented both the increase in cytosolic Ca2+ and the associated platelet aggregation induced by U46619. These data suggest that U46619 may induce platelet aggregation through an increase in cytosolic Ca2+, and that both Ca2+ entry and its release from intracellular storage sites probably contribute to the increase in cytosolic Ca2+. Furthermore, the rate of the increase in cytosolic Ca2+ concentration, as well as the magnitude of the increase, appear to be critical for platelet aggregation induced by U46619. Our data are consistent with the hypothesis that PGs inhibit U46619-induced platelet aggregation by preventing the increase in cytosolic Ca2+, and that these effects may be mediated via an increase in cAMP, since they were induced by PGs and cAMP.  相似文献   

17.
Low concentrations of a polyoxyethylene detergent, Brij 58, inhibited the secondary phase of platelet aggregation induced by ADP in human citrated platelet-rich plasma but had no effect on primary aggregation. Thrombin-induced aggregation of washed human platelets suspended in Tyrode's buffer was inhibited after incubation of cells with 4.10(-6) M detergent. Efflux of [14C]serotonin, 45Ca2+ and labile aorta contracting substance (thromboxane A2) and development of prothrombin-converting activity (platelet factor 3) were abolished concomitantly. Aggregation of washed platelets either by sodium arachidonate or by collagen was also inhibited by the same concentration of Brij 58 which inhibited thrombin aggregation. This concentration did not itself produce any release of a cytoplasmic marker, lactate dehydrogenase, from platelets. Higher concentrations of Brij 58, exceeding 4.10(-5) M, lysed the cells liberating lactate dehydrogenase, serotonin and Ca2+. When albumin was included as a platelet stabilizer in the suspending medium the concentration of detergent required for the inhibitory effects was increased ten-fold. This could be attributed to competitive binding of the detergent to albumin, demonstrated with [14C]acetylated Brij 58. A variety of other polyoxyethylene detergents, at concentrations from 8.10(-4) to 5.10(-3) M, also inhibited platelet aggregation induced by thrombin. It is concluded that low concentrations of Brij 58 stabilize the platelets against the action of aggregating agents, while higher concentrations produce membrane destabilization and cell lysis.  相似文献   

18.
Metallothionein (MT) is a low-molecular-weight, cysteine-rich protein that contains heavy metals such as cadmium and zinc. The biological function of MT in platelets is not yet understood. Therefore, the aim of this study was to systematically examine the inhibitory mechanisms of metallothionein in platelet aggregation. In this study, metallothionein concentration-dependently (1-8 microM) inhibited platelet aggregation in human platelets stimulated by agonists. Metallothionein (4 and 8 microM) inhibited phosphoinositide breakdown in [3H]-inositol-labeled platelets, intracellular Ca+2 mobilization in Fura-2 AM-loaded platelets, and thromboxane A2 formation stimulated by collagen. In addition, metallothionein (4 and 8 microM) significantly increased the formation of cyclic GMP but not cyclic AMP in human platelets. Rapid phosphorylation of a protein of Mr 47,000 (P47), a marker of protein kinase C activation, was triggered by PDBu (100 nM). This phosphorylation was markedly inhibited by metallothionein (4 and 8 microM) in phosphorus-32-labeled platelets. In an in vivo thrombotic study, platelet thrombus formation was induced by irradiation of mesenteric venules in mice pretreated with fluorescein sodium. Metallothionein (6 microg/g) significantly prolonged the latency period for inducing platelet plug formation in mesenteric venules. These results indicate that the antiplatelet activity of metallothionein may involve the following pathways: (1) metallothionein may inhibit the activation of phospholipase C, followed by inhibition of phosphoinositide breakdown and thromboxane A2 formation, thereby leading to inhibition of intracellular Ca+2 mobilization; (ii) Metallothionein also activated the formation of cyclic GMP in human platelets, resulting in inhibition of platelet aggregation. The results strongly indicate that metallothionein provides protection against thromboembolism.  相似文献   

19.
The aim of the present study was to apply spin trapping/EPR spectroscopy to investigate the existence and biological role of the L-arginine/nitric oxide pathway in human platelet aggregation. Three different spin traps were used: two nitroso, 3,5-dibromo-4-nitrosobenzenesulfonate (DBNBS) and 2-methyl-2-nitrosopropane (MNP), and a nitrone, 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The effect of spin-trap concentration on the collagen-induced human platelet aggregation was compared to the anti-aggregatory effect caused by L-arginine. The results show that the nitroso spin traps (DBNBS and MNP) are more effective than L-arginine in preventing platelet aggregation. DMPO has virtually no effect on the collagen-induced aggregation except at a high concentration (300 mM). Furthermore, activation of platelets with a low concentration of collagen (17 micrograms/ml) and in the presence of DBNBS or MNP yields several EPR-detectable spin adducts. Some of the observed spin adducts do not correspond to those originating from the interaction of a free radical, nitric oxide (NO.) gas, with the spin traps [Arroyo, C.M. & Kohno, M. (1991) Free Radical Res. Commun. 14, 145-155]. Only one adduct of DBNBS, with a relative intensity of 0.1, observed in the washed-platelet experiment and in the presence of superoxide dismutase, is similar to the EPR spectrum obtained following a reaction of pure NO. gas with DBNBS. This suggests that the EPR spectrum of the DBNBS adduct consisting of a triplet may originate from the production of NO. by these cells. Additional DBNBS and MNP spin adducts were generated during platelet activation in the presence of Ca2+ and of a cytosol-depleted L-arginine preparation from washed platelets to which L-arginine was subsequently added. The formation of these DBNBS and MNP spin adducts were inhibited by N omega-methyl-L-arginine (MeArg, 100 microM), suggesting that these originated from a product of NO synthase. Furthermore, the formation of DBNBS and MNP spin adducts in platelet suspensions was enhanced by the presence of superoxide dismutase; however, their formation was prevented by the endothelial-derived relaxing factor (EDRF) inhibitors methylene blue and hemoglobin. The results from the MeArg and EDRF inhibitor experiments support the existence of the L-arginine/NO pathway in platelets. In addition, the prevention of spin-adduct formation by EDRF inhibitors, suggests that the mechanisms of EDRF formation and the L-arginine/NO pathway in endothelial cells and platelets are similar.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The role of phosphatidic acid (PA) in the signal transduction system of platelets was studied using 1-stearoyl 2-arachidonoyl PA (PASA). When PASA was added to rabbit platelets, aggregation occurred. BW755C, a dual inhibitor of cyclooxygenase and lipoxygenase, as well as p-bromophenacyl bromide and mepacrine, inhibitors of phospholipase A2, inhibited the aggregation induced by low concentrations of PASA, but not that induced by high concentrations. PASA also stimulated, in a dose-dependent manner, arachidonic acid liberation, lysophosphatidylcholine and diacylglycerol formation, and mobilization of intracellular Ca2+; all of which were dependent on the presence of Ca2+ in the outer medium. The arachidonic acid liberation was inhibited by p-bromophenacyl bromide or mepacrine, while diacylglycerol formation by low concentrations of PASA was inhibited by BW755C. With platelet membrane fractions or with the platelets made permeable to Ca2+ by pretreatment with ionomycin, PASA caused arachidonic acid liberation in the presence of Ca2+. Furthermore, PASA enhanced the activity of phospholipase A2 partially purified from platelet cytosol acting on 1-palmitoyl-2-[14C]arachidonoyl-glycerophosphoethanolamine. These results provide evidence that PASA preferentially potentiates the activation of phospholipase A2 in cooperation with Ca2+, suggesting that PA acts as a positive feedback regulator to potentiate the activation of phospholipase A2 and contributes to the amplification of platelet activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号