首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATP cassette binding protein 1 (ABCA1) controls the apolipoprotein-mediated cholesterol efflux pathway and determines plasma HDL levels. Although cAMP is known to promote ABCA1 expression and cholesterol efflux from cells, it has not been determined whether cyclic nucleotide phosphodiesterase (PDE) isoforms regulate this pathway. We show that rolipram and cilomilast, inhibitors of cAMP-specific PDE4, increase apolipoprotein A-I (apoA-I)-mediated cholesterol efflux up to 80 and 140% in human THP-1 and mouse J774.A1 macrophages, respectively, concomitant with an elevation of cAMP levels. The EC(50) value was estimated to be 1 to 2 microM for both inhibitors. Rolipram and cilomilast also increase ABCA1 protein expression in THP-1 and J774.A1 macrophages. Thus, PDE4 inhibitors cause parallel increases in cAMP levels, ABCA1 expression and apoA-I-mediated cholesterol efflux. PDE4 inhibitors may provide a novel strategy for the treatment of cardiovascular disease by mobilizing cholesterol from atherosclerotic lesions.  相似文献   

2.
The possibility that the availability of ATP may affect the rate of synthesis of carbamoyl phosphate (measured as citrulline) by carbamoyl phosphate synthase (ammonia) was studied using respiring isolated rat liver mitochondria incubated with added ADP, with hexokinase, glucose, and ATP, or with atractylate, in order to enhance or prevent the efflux of mitochondrial ATP. The effects of these agents were compared with those on oxaloacetate synthesis from pyruvate. Addition of hexokinase, glucose, and ATP to isolated mitochondria resulted in an inhibition of citrulline synthesis which was proportional to the amounts of glucose 6-phosphate formed; under these conditions, matrix ATP and ATP/ADP tended to decrease. The addition of increasing amounts of ADP also resulted in proportional inhibition of citrulline synthesis, but in this case the matrix content of ATP and ADP increased, and ATP/ADP decreased very slightly. In the presence of atractylate, citrulline synthesis was maximal despite a 30% decrease in matrix ATP and ATP/ADP. These effects were observed whether pyruvate, succinate, glutamate, or β-OH-butyrate was used as the respiratory substrate. ADP, the hexokinase system, and atractylate had qualitatively similar but much less pronounced effects on oxaloacetate synthesis from pyruvate. Within the limits of variation observed in these experiments, the rate of synthesis of citrulline appears not to be affected by the matrix content of total ATP, total ADP, or by ATP/ADP. It is affected, however, by the velocity of translocation of ATP into the extramitochondrial medium. These findings suggest that carbamoyl phosphate synthase (ammonia) may be loosely associated with the mitochondrial inner membrane, and may compete for ATP with the ATP-ADP translocator to an extent determined by the extramitochondrial demands for ATP.  相似文献   

3.
Knowledge of the mechanism of pressure-induced inactivation of microorganisms could be helpful in defining an effective, relatively mild pressure treatment as a means of decontamination, especially in combination with other physical treatments or antimicrobial agents. We have studied the effect of high pressure on Lactobacillus plantarum grown at pH 5.0 and 7.0. The classical inactivation kinetics were compared with a number of events related to the acid-base physiology of the cell, i.e., activity of F(0)F(1) ATPase, intracellular pH, acid efflux, and intracellular ATP pool. Cells grown at pH 5.0 were more resistant to pressures of 250 MPa than were cells grown at pH 7.0. This difference in resistance may be explained by a higher F(0)F(1) ATPase activity, better ability to maintain a DeltapH, or a higher acid efflux of the cells grown at pH 5.0. After pressure treatment at 250 MPa, the F(0)F(1) ATPase activity was decreased, the ability to maintain a DeltapH was reduced, and the acid efflux was impaired. The ATP pool increased initially after mild pressure treatment and finally decreased after prolonged treatment. The observations on acid efflux and the ATP pool suggest that the glycolysis is affected by high pressure later than is the F(0)F(1) ATPase activity. Although functions related to the membrane-bound ATPase activity were impaired, no morphological changes of the membrane could be observed.  相似文献   

4.
The active uptake and efflux of Ca2+ from suspensions of vesicles from heavy rabbit muscle sarcoplasmic reticulum have been examined using the antipyrylazo III dye method in the presence of various nucleotide triphosphate substrates to support active Ca2+ accumulation. On addition of ATP, Ca2+ is rapidly accumulated and maintained at high internal concentrations until the substrate for pump protein is exhausted. Ca2+-induced Ca2+ release which is inhibited by ruthenium red can be demonstrated. The kinetics of Ca2+ release via these channels is different from the Ca2+ efflux observed after substrate exhaustion. This rate was found to be dependent on the type of nucleotide triphosphate, decreasing in the order ATP greater than GTP greater than CTP greater than ITP UTP. It is suggested that different conformations of the Ca2+ pump protein induced by the different substrates may result in the creation of pathways for the facilitated diffusion of Ca2+.  相似文献   

5.
Addition of ATP to medium surrounding intact, transformed 3T3 cells activates the formation of aqueous channels in the plasma membrane. This results in efflux of nucleotide pools and ions and entry into the cytosol of charged, phosphorylated species. In such permeabilized cells, glycolysis is totally dependent on the external addition of glucose, inorganic phosphate, ADP, K+, Mg2+ and NAD+ which restore lactic acid formation to levels found in untreated cells. As expected, such reconstitution of glycolytic activity is found to restore intracellular ATP levels. This is accompanied by sealing of the membrane channels so that efflux of nucleotide pools ceases. Pyruvate, a substrate for mitochondrial ATP synthesis, when provided along with ADP and inorganic phosphate also produces sealing of the membrane channels. On the other hand, reactivation of pentose phosphate shunt activity, which does not lead to ATP synthesis, does not induce restoration of the membrane permeability barrier. Furthermore, compounds which lower the internal ATP pool prevent sealing, and also render the plasma membrane more sensitive to external ATP (Rozengurt and Heppel, '79). Sealing of aqueous channels following restoration of the internal ATP pool is associated with phosphorylation of the inner membrane surface, and is unaffected by inhibitors of protein synthesis, microfilament or microtubular assembly. These results indicate the probable role of intracellular ATP in the restoration and/or maintenance of an active membrane barrier against efflux of small molecules and ions in transformed 3T3 cells.  相似文献   

6.
Mao Y  Deng A  Qu N  Wu X 《Biochemistry. Biokhimii?a》2006,71(11):1222-1229
The chaperone activity of Hsp70 in protein folding and its conformational switching are regulated through the hydrolysis of ATP and the ATP-ADP exchange cycle. It was reported that, in the presence of physiological concentrations of ATP (approximately 5 mM) and ADP (approximately 0.5 mM), Hsp70 catalyzes ATP-ADP exchange through transfer of gamma-phosphate between ATP and ADP, via an autophosphorylated intermediate, whereas it only catalyzes the hydrolysis of ATP in the absence of ADP. To clarify the functional domain of the ATP-ADP exchange activity of Hsp70, we isolated the 44-kD ATPase domain of Hsp70 after limited proteolysis with alpha-chymotrypsin (EC 3.4.21.1). The possibility of ATP-ADP exchange activity of a contaminating nucleoside diphosphate kinase (EC 2.7.4.6) was monitored throughout the experiments. The purified 44-kD ATPase domain exhibited intrinsic ATP-ADP exchange by catalyzing the transfer of gamma-phosphate between ATP and ADP with acid-stable autophosphorylation at Thr204.  相似文献   

7.
Salivary histatins are potent in vitro antifungal proteins and have promise as therapeutic agents against oral candidiasis. We performed pharmacological studies directed at understanding the biochemical basis of Hst 5 candidacidal activity. Three inhibitors of mitochondrial metabolism: carbonyl cyanide p-chlorophenylhydrazone, dinitrophenol, and azide inhibited Hst 5 killing of Candida albicans, while not inhibiting cellular ATP production. In contrast, Hst 5 caused a drastic reduction of C. albicans intracellular ATP content, which was a result of an efflux of ATP. Carbonyl cyanide p-chlorophenylhydrazone, dinitrophenol, and azide inhibited Hst 5-induced ATP efflux, thus establishing a correlation between ATP release and cell killing. Furthermore, C. albicans cells were respiring and had polarized membranes at least 80 min after ATP release, thus implying a non-lytic exit of cellular ATP in response to Hst 5. Based on evidence that transmembrane ATP efflux can occur in the absence of cytolysis through a channel-like pathway and that released ATP can act as a cytotoxic mediator by binding to membrane purinergic receptors, we evaluated whether extracellular ATP released by Hst 5 may have further functional role in cell killing. Consistent with this hypothesis, purinergic agonists BzATP and adenosine 5'O-(thiotriphosphate) induced loss of C. albicans cell viability and purinergic antagonists prevented Hst 5 killing.  相似文献   

8.
Gp170 (also known as P-glycoprotein) is a transmembrane glycoprotein which is overexpressed in multidrug-resistant tumor cells and is also found in the apical plasma membrane domain of several normal human and animal tissues. Gp170 has been postulated to function as an energy-dependent efflux pump for cytotoxic drugs. In rat liver, Gp170 is restricted to the bile canalicular domain of the plasma membrane. Canalicular membrane vesicles (CMV), but not sinusoidal membrane vesicles, contained a approximately 160-kDa protein which reacts with anti-Gp170 monoclonal antibody and manifest ATP-dependent [3H]daunomycin transport which is temperature dependent, osmotically sensitive, and saturable. Among several nucleotides, ATP was a potent stimulator of transport whereas non- or slowly hydrolyzable analogues (adenosin-5-O-(3-thiotriphosphate, adenyl-5-yl-imidodiphosphate) were ineffective. ATP-dependent daunomycin transport was inhibited by cytotoxic drugs (vinblastine, vincristine, and adriamycin) and other drugs, such as verapamil and quinidine, which restore anti-cancer drug sensitivity in resistant cells. Inside-out CMV were separated from right side-out CMV by antibody-induced affinity density perturbation. Only inside-out CMV manifested ATP-dependent daunomycin transport. These results suggest that Gp170 is an ATP-dependent efflux pump which is responsible for the undirectional, energy-dependent transport of daunomycin and other drugs by rat liver into the bile.  相似文献   

9.
The regulatory properties of the lysine-sensitive aspartokinase (ATP : L-aspartate 4-phosphotransferase, EC 2.7.2.4) have been studied under equilibrium conditions by determining the effects of modifiers on the rate of equilibrium isotope exchange between ADP and ATP. The extent of inhibition by lysine, leucine or phenylalanine is almost independent of substrate concentration but is influenced by the substrate/product ratio. Inhibition by a given concentration of inhibitor is increased when the ADP/ATP ratio is increased indicating a regulatory interaction between end products and cellular energy metabolism. Lysine inhibition is cooperative under equilibrium conditions and the parameters of the Hill equation are nearly identical to those obtained in initial velocity studies. A cooperative heterotropic interaction between lysine and leucine is also observed by the ATP-ADP exchange assay just as it is in initial velocity assays. Thus, the regulatory features of aspartokinase that are observed in initial velocity studies are also manifest under equilibrium conditions as revealed by equilibrium isotope exchange rates.  相似文献   

10.
A mathematical model was built to account for the kinetic of extracellular ATP (ATPe) and extracellular ADP (ADPe) concentrations from goldfish hepatocytes exposed to hypotonicity. The model was based on previous experimental results on the time course of ATPe accumulation, ectoATPase activity, and cell viability [Pafundo et al., 2008].The kinetic of ATPe is controlled by a lytic ATP flux, a non-lytic ATP flux, and ecto-ATPase activity, whereas ADPe kinetic is governed by a lytic ADP flux and both ecto-ATPase and ecto-ADPase activities. Non-lytic ATPe efflux was included as a diffusion equation modulated by ATPe activation (positive feedback) and ADPe inhibition (negative feedback).The model yielded physically meaningful and stable steady-state solutions, was able to fit the experimental time evolution of ATPe and simulated the concomitant kinetic of ADPe. According to the model during the first minute of hypotonicity the concentration of ATPe is mainly governed by both lytic and non-lytic ATP efflux, with almost no contribution from ecto-ATPase activity. Later on, ecto-ATPase activity becomes important in defining the time dependent decay of ATPe levels. ADPe inhibition of the non-lytic ATP efflux was strong, whereas ATPe activation was minimal. Finally, the model was able to predict the consequences of partial inhibition of ecto-ATPase activity on the ATPe kinetic, thus emulating the exposure of goldfish cells to hypotonic medium in the presence of the ATP analog AMP-PCP. The model predicts this analog to both inhibit ectoATPase activity and increase non-lytic ATP release.  相似文献   

11.
In sarcoplasmic reticulum vesicles or in the (Ca2+ + Mg2+)-ATPase purified from sarcoplasmic reticulum, quercetin inhibited ATP hydrolysis, Ca2+ uptake, ATP-Pi exchange, ATP synthesis coupled to Ca2+ efflux, ATP-ADP exchange, and steady state phosphorylation of the ATPase by inorganic phosphate. Steady state phosphorylation of the ATPase by ATP was not inhibited. Quercetin also inhibited ATP and ADP binding but not the binding of Ca2+. The inhibition of ATP-dependent Ca2+ transport by quercetin was reversible, and ATP, Ca2+, and dithiothreitol did not affect the inhibitory action of quercetin.  相似文献   

12.
Permeabilized hepatocytes accumulated 45Ca2+ into a non-mitochondrial pool when provided with ATP. 45Ca2+ efflux from this pool was revealed by removal of ATP with glucose and hexokinase or by inhibiting uptake with NaVO3. The effect of inositol 1,4,5-trisphosphate (IP3) on 45Ca2+ efflux from the pool was investigated. IP3 (5 microM) evoked a rapid increase in the rate of 45Ca2+ efflux. Kinetic analysis of the effect of IP3 indicated the existence of two distinct Ca2+ fractions within the pool; only one, accounting for about one-third of the ATP-dependent Ca2+ content of the pool, was responsive to IP3. The effect of IP3 on 45Ca2+ efflux from the non-mitochondrial pool does not require ATP, a finding that is inconsistent with a previous suggestion that this effect may be mediated by protein phosphorylation.  相似文献   

13.
The relation between the intramitochondrial and extramitochondrial ratio ATP/ADP, the transmembrane potential and pH gradient is investigated in the present communication. For this purpose mitochondria are equilibrated with added [14C]ATP in the presence of substrate and oligomycin for eliminating phosphate transfer by ATPase. The membrane potential was measured by the distribution of 86Rb+ in the presence of valinomycin, the deltapH by the distribution of [14C]acetate. In the energized state by varying deltapsi between 60 and 160 mV, the internal (ATP/ADP)i is decreased 30-fold, the external (ATP/ADP)e remains largely constant. As a result, the deltalog (ATP/ADP)e/(ATP/ADP)i = deltalogphi is increased linerly with deltapsi according to the following relation: deltalogphi = 0.85 deltapsi - 0.35. The deltapH was changed between 0.1 and 0.8 by increasing the Pi concentration causing only a minor decrease of deltalogphi would be expected if the ATP-ADP exchange has a significant electroneutral portion. Also in the uncoupled and respiration-inhibited state the same function between deltalogphi and deltapsi is found as in the energized states. It is concluded that under these conditions the ATP-ADP exchange is largely electrical.  相似文献   

14.
This study is concerned with Na/K pump-mediated phosphate efflux that occurs during uncoupled Na efflux in human red blood cells. Uncoupled Na efflux is known to be a ouabain-sensitive mode of the Na/K pump that occurs in the absence of external Nao and Ko. Because this efflux (measured with 22Na) is also inhibited by 5 mM Nao, the efflux can be separated into a Nao-sensitive and a Nao-insensitive component. Previous work established that the Nao-sensitive efflux is actually comprised of an electroneutral coefflux of Na with cellular anions, such as SO4 (as 35SO4). The present work focuses on the Nao-insensitive component in which the principal finding is that orthophosphate (P(i)) is coeffluxed with Na in a ouabain-sensitive manner. This P(i) efflux can be seen to occur, in the absence of Ko, in both DIDS-treated intact cells and resealed red cell ghosts. This efflux of P(i) was shown to be derived directly from the pump's substrate, ATP, by the use of resealed ghosts made to contain both ATP and P(i) in which either the ATP or the P(i) were labeled with, respectively, [gamma-32P]ATP or [32P]H3PO4. (These resealed ghosts also contained Na, Mg, P(i), SO4, Ap5A, as well as an arginine kinase/creatine kinase nucleotide regenerating system for the control of ATP and ADP concentrations, and were suspended usually in (NMG)2SO4 at pH 7.4.) It was found that 32P was only coeffluxed with Na when the 32P was contained in [gamma-32P]ATP and not in [32P]H3PO4. This result implies that the 32P that is released comes from ATP via the pump's phosphointermediate (EP) without commingling with the cellular pool of P(i). Ko (as K2SO4) inhibits this 32P efflux as well as the Nao-sensitive 35SO4 efflux, with a K0.5 of 0.3-0.4 mM. The K0.5 for inhibition of P(i) efflux by Ko is not influenced by Nao, nor can Nao act as a congenor for Ko in any of the flux reactions involving Ko. The stoichiometry of Na to SO4 and Na to P(i) efflux is approximately 2:1 under circumstances where the stoichiometry of Na effluxed to ATP utilized is 3:1. From these and other results reported, it is suggested that there are two types of uncoupled Na efflux that differ from each other on the basis of their sensitivity to Nao, the source (cellular vs substrate) and kind of anion (SO4 vs P(i)) transported.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
1. The effect was studied of local anesthetics (tetracaine, dibucaine, procaine and xylocaine) on the forward and the backward reactions of the calcium pump of skeletal muscle sarcoplasmic reticulum. 2. The inhibition of the rate of calcium uptake, the rate of calcium-dependent ATP splitting and the rate of calcium-dependent ATP-ADP phosphate exchange by sarcoplasmic reticulum in the presence of the above drugs is at least partially due to the inhibition of the phosphoprotein formation from ATP. 3. The rate of the ADP-induced calcium release from sarcoplasmic reticulum and the rate of ATP synthesis driven by the calcium efflux are inhibited on account of a reduction of the phosphoprotein formation by orthophosphate. 4. The phosphorylation of calcium transport ATPase by either ATP or orthophosphate is diminished by the local anesthetics owing to a reduction in the apparent calcium affinity of sarcoplasmic reticulum emmbranes on the outside and on the inside, respectively. 5. The drug-induced calcium efflux from calcium-preloaded sarcoplasmic reticulum vesicles, a reaction not requiring ADP, is probably not mediated by calcium transport ATPase.  相似文献   

16.
A novel method exploiting the differential affinity of ADP and ATP to Mg2+ was developed to measure mitochondrial ADP-ATP exchange rate. The rate of ATP appearing in the medium after addition of ADP to energized mitochondria, is calculated from the measured rate of change in free extramitochondrial [Mg2+] reported by the membrane-impermeable 5K+ salt of the Mg2+-sensitive fluorescent indicator, Magnesium Green, using standard binding equations. The assay is designed such that the adenine nucleotide translocase (ANT) is the sole mediator of changes in [Mg2+] in the extramitochondrial volume, as a result of ADP-ATP exchange. We also provide data on the dependence of ATP efflux rate within the 6.8-7.8 matrix pH range as a function of membrane potential. Finally, by comparing the ATP-ADP steady-state exchange rate to the amount of the ANT in rat brain synaptic, brain nonsynaptic, heart and liver mitochondria, we provide molecular turnover numbers for the known ANT isotypes.  相似文献   

17.
Polycystic kidney diseases (PKD) are characterized by excessive proliferation of renal tubular epithelial cells, development of fluid-filled cysts, and progressive renal insufficiency. cAMP inhibits proliferation of normal renal tubular epithelial cells but stimulates proliferation of renal tubular epithelial cells derived from patients with PKD. Madin-Darby canine kidney (MDCK) epithelial cells, which are widely used as an in vitro model of cystogenesis, also proliferate in response to cAMP. Intracellular cAMP levels are tightly regulated by phosphodiesterases (PDE). Isoform-specific PDE inhibitors have been developed as therapeutic agents to regulate signaling pathways directed by cAMP. In other renal cell types, we have previously demonstrated that cAMP is hydrolyzed by PDE3 and PDE4, but only PDE3 inhibitors suppress proliferation by inhibiting Raf-1 activity (Cheng J, Thompson MA, Walker HJ, Gray CE, Diaz Encarnacion MM, Warner GM, Grande JP. Am J Physiol Renal Physiol 287:F940-F953, 2004.) A potential role for PDE isoform(s) in cAMP-mediated proliferation of MDCK cells has not previously been established. Similar to what we have previously found in several other renal cell types, cAMP hydrolysis in MDCK cells is directed primarily by PDE4 (85% of total activity) and PDE3 (15% of total activity). PDE4 inhibitors are more effective than PDE3 inhibitors in increasing intracellular cAMP levels in MDCK cells. However, only PDE3 inhibitors, and not PDE4 inhibitors, stimulate mitogenesis of MDCK cells. PDE3 but not PDE4 inhibitors activate B-Raf but not Raf-1, as assessed by an in vitro kinase assay. PDE3 but not PDE4 inhibitors activate the ERK pathway and activate cyclins D and E, as assessed by histone H1 kinase assay. We conclude that mitogenesis of MDCK cells is regulated by a functionally compartmentalized intracellular cAMP pool directed by PDE3. Pharmacologic agents that stimulate PDE3 activity may provide the basis for new therapies directed toward reducing cystogenesis in patients with PKD.  相似文献   

18.
We have adapted bioluminescence methods to be able to measure phosphodiesterase (PDE) activity in a one-step technique. The method employs a four-enzyme system (PDE, adenylate kinase (AK) using excess CTP instead of ATP as substrate, pyruvate kinase (PK), and firefly luciferase) to generate ATP, with measurement of the concomitant luciferase-light emission. Since AK, PK, and luciferase reactions are coupled to recur in a cyclic manner, AMP recycling maintains a constant rate of ATP formation, proportional to the steady-state AMP concentration. The cycle can be initiated by the PDE reaction that yields AMP. As long as the PDE reaction is rate limiting, the system is effectively at steady state and the bioluminescence kinetics progresses at a constant rate proportional to the PDE activity. In the absence of cAMP and PDE, low concentrations of AMP trigger the AMP cycling, which allows standardizing the system. The sensitivity of the method enables detection of <1 μU (pmol/min) of PDE activity in cell extracts containing 0.25–10 μg protein. Assays utilizing pure enzyme showed that 0.2 mM IBMX completely inhibited PDE activity. This single-step enzyme- and substrate-coupled cyclic-reaction system yields a simplified, sensitive, reproducible, and accurate method for quantifying PDE activities in small biological samples.  相似文献   

19.
Rat glioma cells grown in culture secrete cyclic adenosine 3':5'-monophosphate (cyclic AMP) into the culture medium following stimulation by beta-agonistic catecholamines. Agents which reduced cellular ATP levels such as valinomycin, oligomycin, and uncouplers of oxidative phosphorylation, inhibited cyclic AMP efflux. Secretion of cyclic AMP was also prevented by prostaglandin A-1 and pharmacological agents including probenecid and papaverine. Of the latter agents, only papaverine reduced ATP levels. These results suggest that the transport of cyclic AMP across animal cell membranes is energy-dependent and subject to regulation.  相似文献   

20.
The human P-glycoprotein (Pgp, ABCB1) is an ATP-dependent efflux pump for structurally unrelated hydrophobic compounds, conferring simultaneous resistance to and restricting bioavailability of several anticancer and antimicrobial agents. Drug transport by Pgp requires a coordinated communication between its substrate binding/translocating pathway (substrate site) and the nucleotide binding domains (NBDs or ATP sites). In this study, we demonstrate that certain thioxanthene-based Pgp modulators, such as cis-(Z)-flupentixol and its closely related analogues, effectively disrupt molecular cross talk between the substrate, and the ATP, sites without affecting the basic functional aspects of the two domains, such as substrate recognition, binding, and hydrolysis of ATP and dissociation of ADP following ATP hydrolysis. The allosteric modulator cis-(Z)-flupentixol has no effect on [alpha-(32)P]-8-azido-ATP binding to Pgp under nonhydrolytic conditions or on the K(m) for ATP during ATP hydrolysis. Both hydrolysis of ATP and vanadate-induced [alpha-(32)P]-8-azido-ADP trapping (following [alpha-(32)P]-8-azido-ATP breakdown) by Pgp are stimulated by the modulator. However, the ability of Pgp substrates (such as prazosin) to stimulate ATP hydrolysis and facilitate vanadate-induced trapping of [alpha-(32)P]-8-azido-ADP is substantially affected in the presence of cis-(Z)-flupentixol. Substrate recognition by Pgp as determined by [(125)I]iodoarylazidoprazosin ([(125)I]IAAP) binding both in the presence and in the absence of ATP is facilitated by the modulator, whereas substrate dissociation in response to vanadate trapping is considerably affected in its presence. In the Pgp F983A mutant, which is impaired in modulation by cis-(Z)-flupentixol, the modulator has a minimal effect on substrate-stimulated ATP hydrolysis as well as on substrate dissociation coupled to vanadate trapping. Finally, cis-(Z)-flupentixol has no effect on dissociation of [alpha-(32)P]-8-azido-ADP (or ADP) from vanadate-trapped Pgp, which is essential for subsequent rounds of ATP hydrolysis. Taken together, our results demonstrate a distinct mechanism of Pgp modulation that involves allosteric disruption of molecular cross talk between the substrate, and the ATP, sites without any direct interference with their individual functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号