首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Akula SM  Pramod NP  Wang FZ  Chandran B 《Cell》2002,108(3):407-419
Human herpesvirus-8 (HHV-8) is implicated in the pathogenesis of Kaposi's sarcoma. HHV-8 envelope glycoprotein B possesses the RGD motif known to interact with integrin molecules, and HHV-8 infectivity was inhibited by RGD peptides, antibodies against RGD-dependent alpha3 and beta1 integrins, and by soluble alpha3beta1 integrin. Expression of human alpha3 integrin increased the infectivity of virus for Chinese hamster ovary cells. Anti-gB antibodies immunoprecipitated the virus-alpha3 and -beta1 complexes, and virus binding studies suggest a role for alpha3beta1 in HHV-8 entry. Further, HHV-8 infection induced the integrin-mediated activation of focal adhesion kinase (FAK). These findings implicate a role for alpha3beta1 integrin and the associated signaling pathways in HHV-8 entry into the target cells.  相似文献   

2.
Human herpesvirus 8 (HHV-8; Kaposi's sarcoma-associated herpesvirus) envelope glycoprotein gB possesses an RGD motif, interacts with alpha 3 beta 1 integrin, and uses it as one of the entry receptors. HHV-8 induces the integrin-dependent focal adhesion kinase (FAK), a critical step in the outside-in signaling pathways necessary for the subsequent phosphorylation of other cellular kinases, cytoskeletal rearrangements, and other functions. As an initial step toward deciphering the role of HHV-8 gB-integrin interaction in infection, signal pathways induced by gB were examined. A truncated form of gB without the transmembrane and carboxyl domains (gB Delta TM), a gB Delta TM mutant form (gB Delta TM-RGA) with an RGD-to-RGA mutation, and inhibitors of cellular kinases were used. HHV-8 gB Delta TM, but not gB Delta TM-RGA, induced FAK phosphorylation in target cells, which was in part dependent on the presence of alpha 3 beta 1 integrin. FAK was critical for the subsequent phosphorylation of Src by gB Delta TM, and Src induction was essential for the phosphorylation of phosphatidylinositol 3-kinase (PI-3K). HHV-8 gB Delta TM-induced PI-3K was essential for the induction of RhoA and Cdc42 Rho GTPases that was accompanied by the cytoskeletal rearrangements. These gB-induced morphological changes were inhibited by the PI-3K inhibitors. Ezrin, one of the essential elements required to cross-link the actin cytoskeleton with the plasma membrane and to induce the morphological changes, was induced by the Rho GTPases. Inhibition of cellular tyrosine kinases by the brief treatment of cells with 4',5,7-trihydroxyisoflavone (genistein) blocked the entry of HHV-8 into target cells. These findings suggest that, independently of other viral glycoproteins and via its RGD motif, HHV-8 gB induces integrin-dependent pre-existing FAK-Src-PI-3K-Rho GTPase kinases. Since these signal pathways play vital roles in host cell endocytosis and movement of particulate materials in the cytoplasm, the early stages of HHV-8 gB interaction with host cells may provide a very conducive environment for the successful infection of target cells.  相似文献   

3.
Human herpesvirus 8 (HHV-8) or Kaposi's sarcoma-associated herpesvirus, implicated in the pathogenesis of Kaposi's sarcoma, utilizes heparan sulfate-like molecules to bind the target cells via its envelope-associated glycoproteins gB and gpK8.1A. HHV-8-gB possesses the Arg-Gly-Asp (RGD) motif, the minimal peptide region of many proteins known to interact with subsets of host cell surface integrins. HHV-8 utilizes alpha3beta1 integrin as one of the receptors for its entry into the target cells via its gB interaction and induces the activation of focal adhesion kinase (FAK) (S. M. Akula, N. P. Pramod, F.-Z. Wang, and B. Chandran, Cell 108:407-419, 2002). Since FAK activation is the first step in the outside-in signaling necessary for integrin-mediated cytoskeletal rearrangements, cell adhesions, motility, and proliferation, the ability of HHV-8-gB to mediate the target cell adhesion was examined. A truncated form of gB without the transmembrane and carboxyl domains (gBdeltaTM) and a gBdeltaTM mutant (gBdeltaTM-RGA) with a single amino acid mutation (RGD to RGA) were expressed in a baculovirus system and purified. Radiolabeled HHV-8-gBdeltaTM, gBdeltaTM-RGA, and deltaTMgpK8.1A proteins bound to the human foreskin fibroblasts (HFFs), human dermal microvascular endothelial (HMVEC-d) cells, human B (BJAB) cells, and Chinese hamster ovary (CHO-K1) cells with equal efficiency, which was blocked by preincubation of proteins with soluble heparin. Maxisorp plate-bound gBdeltaTM protein induced the adhesion of HFFs and HMVEC-d and monkey kidney epithelial (CV-1) cells in a dose-dependent manner. In contrast, the gBdeltaTM-RGA and DeltaTMgpK8.1A proteins did not mediate adhesion. Adhesion mediated by gBdeltaTM was blocked by the preincubation of target cells with RGD-containing peptides or by the preincubation of plate-bound gBdeltaTM protein with rabbit antibodies against gB peptide containing the RGD sequence. In contrast, adhesion was not blocked by the preincubation of plate-bound gBdeltaTM protein with heparin, suggesting that the adhesion is mediated by the RGD amino acids of gB, which is independent of the heparin-binding domain of gB. Integrin-ligand interaction is dependent on divalent cations. Adhesion induced by the gBdeltaTM was blocked by EDTA, thus suggesting the role of integrins in the observed adhesions. Focal adhesion components such as FAK and paxillin were activated by the binding of gBdeltaTM protein to the target cells but not by gBdeltaTM-RGA protein binding. Inhibition of FAK phosphorylation by genistein blocked gBdeltaTM-induced FAK activation and cell adhesion. These findings suggest that HHV-8-gB could mediate cell adhesion via its RGD motif interaction with the cell surface integrin molecules and indicate the induction of cellular signaling pathways, which may play roles in the infection of target cells and in Kaposi's sarcoma pathogenesis.  相似文献   

4.
5.
R-Ras regulates integrin function, but its effects on integrin signaling pathways have not been well described. We demonstrate that activation of R-Ras promoted focal adhesion formation and altered localization of the alpha2beta1 integrin from cell-cell to cell-matrix adhesions in breast epithelial cells. Constitutively activated R-Ras(38V) dramatically enhanced focal adhesion kinase (FAK) and p130(Cas) phosphorylation upon collagen stimulation or clustering of the alpha2beta1 integrin, even in the absence of increased ligand binding. Signaling events downstream of R-Ras differed from integrins and K-Ras, since pharmacological inhibition of Src or disruption of actin inhibited integrin-mediated FAK and p130(Cas) phosphorylation, focal adhesion formation, and migration in control and K-Ras(12V)-expressing cells but had minimal effect in cells expressing R-Ras(38V). Therefore, signaling from R-Ras to FAK and p130(Cas) has a component that is Src independent and not through classic integrin signaling pathways and a component that is Src dependent. R-Ras effector domain mutants and pharmacological inhibition suggest a partial role for phosphatidylinositol 3-kinase (PI3K), but not Raf, in R-Ras signaling to FAK and p130(Cas). However, PI3K cannot account for the Src-independent pathway, since simultaneous inhibition of both PI3K and Src did not completely block effects of R-Ras on FAK phosphorylation. Our results suggest that R-Ras promotes focal adhesion formation by signaling to FAK and p130(Cas) through a novel mechanism that differs from but synergizes with the alpha2beta1 integrin.  相似文献   

6.
7.
The functional receptor for the flavivirus West Nile (WNV) infection has been characterized in this study with a combination of biochemical and molecular approaches. A 105-kDa protease-sensitive glycoprotein that binds WNV was isolated from the plasma membrane of cells permissive to WNV infection. The protein was subjected to peptide sequencing, and this glycoprotein was identified as a member of the integrin superfamily. Infection of WNV was shown to be markedly inhibited in Vero cells pretreated with blocking antibodies against alpha(v)beta(3) integrin and its subunits by receptor competition assay. It was also noted that cells pretreated with antibodies against alpha(v)beta(3) integrin can effectively inhibit flavivirus Japanese encephalitis but to a lesser extent flavivirus dengue infections. West Nile virus entry is independent of divalent cations and is not highly blocked by arginine-glycine-aspartic acid (RGD) peptides, suggesting that the interaction between the virus and alpha(v)beta(3) integrin is not highly dependent on the classical RGD binding motif. In addition, gene silencing of the beta(3) integrin subunit in cells has resulted in cells largely resistant to WNV infection. In contrast, expression of recombinant human beta(3) integrin substantially increased the permissiveness of CS-1 melanoma cells for WNV infection. Soluble alpha(v)beta(3) integrin can also effectively block WNV infection in a dose-dependent manner. Furthermore, WNV infection also triggered the outside-in signaling pathway via the activation of integrin-associated focal adhesion kinase. The identification of alpha(v)beta(3) integrin as a receptor for WNV provides insight into virus-receptor interaction, hence creating opportunities in the development of anti-viral strategies against WNV infection.  相似文献   

8.
9.
Adhesive interactions play important roles in coordinating T cell migration and activation, which are mediated by binding of integrins to RGD motif found on extracellular matrix proteins. Disintegrins, isolated from snake venoms, contain the RGD sequence that confers selectivity to integrin interaction. We have investigated the ability of three RGD-disintegrins, ligands of alpha(5)beta(1) and alpha(v)beta(3), Flavoridin (Fl), Kistrin (Kr) and Echistatin (Ech), in modulating the activation of human T lymphocyte. The disintegrins induced T cell proliferation and CD69 expression. This activation parallels with actin cytoskeleton reorganization and tyrosine phosphorylation. Furthermore, the peptides induced focal adhesion kinase (FAK) and phosphoinositide 3-kinase (PI3K) activation. Finally, RGD-disintegrins were capable of driving NF-kappaB nuclear translocation and c-Fos expression, in a PI3K and ERK1/2 activities dependent manner. This report is the first to show that RGD-disintegrins interact with integrins on human T lymphocyte surface, modulating cell proliferation and activation of specific pathways coupled to integrin receptor.  相似文献   

10.
11.
We previously reported that the enterocytic differentiation of human colonic Caco-2 cells correlated with alterations in integrin signaling. We now investigated whether differentiation and apoptosis of Caco-2 cells induced by the short-chain fatty acid butyrate (NaBT) was associated with alterations in the integrin-mediated signaling pathway with special interest in the expression and activity of focal adhesion kinase (FAK), of the downstream phosphatidylinositol 3'-kinase (PI 3-kinase)-Akt pathway and in the role of the nuclear factor kappaB (NF-kappaB). NaBT increased the level of sucrase. It induced apoptosis as shown by: (1) decreased Bcl-2 and Bcl-X(L) proteins and increased Bax protein; (2) activation of caspase-3; and (3) increased shedding of apoptotic cells in the medium. This effect was associated with defective integrin-mediated signaling as shown by: (1) down-regulation of beta1 integrin expression; 2) decreased FAK expression and tyrosine phosphorylation; (3) concerted alterations in cytoskeletal and structural focal adhesions proteins (talin, ezrin); and (4) decreased FAK ability to associate with PI 3-kinase. However, in Caco-2 cells, beta1-mediated signaling failed to be activated downstream of FAK and PI 3-kinase at the level of Akt. Transfection studies show that NaBT treatment of Caco-2 cells promoted a significant activation of the NF-kappaB which was probably involved in the NaBT-induced apoptosis. Our results indicate that the prodifferentiating agent NaBT induced apoptosis of Caco-2 cells probably through NF-kappaB activation together with a defective beta1 integrin-FAK-PI 3-kinase pathways signaling.  相似文献   

12.
Early during de novo infection of human microvascular dermal endothelial (HMVEC-d) cells, Kaposi's sarcoma-associated herpesvirus (KSHV) (human herpesvirus 8 [HHV-8]) induces the host cell's preexisting FAK, Src, phosphatidylinositol 3-kinase (PI3-K), Rho-GTPases, Diaphanous-2 (Dia-2), Ezrin, protein kinase C-zeta, extracellular signal-regulated kinase 1/2 (ERK1/2), and NF-kappaB signal pathways that are critical for virus entry, nuclear delivery of viral DNA, and initiation of viral gene expression. Since several of these signal molecules are known to be associated with lipid raft (LR) domains, we investigated the role of LR during KSHV infection of HMVEC-d cells. Pretreatment of cells with LR-disrupting agents methyl beta-cyclo dextrin (MbetaCD) or nystatin significantly inhibited the expression of viral latent (ORF73) and lytic (ORF50) genes. LR disruption did not affect KSHV binding but increased viral DNA internalization. In contrast, association of internalized viral capsids with microtubules (MTs) and the quantity of infected nucleus-associated viral DNA were significantly reduced. Disorganized and disrupted MTs and thick rounded plasma membranes were observed in MbetaCD-treated cells. LR disruption did not affect KSHV-induced FAK and ERK1/2 phosphorylation; in contrast, it increased the phosphorylation of Src, significantly reduced the KSHV-induced PI3-K and RhoA-GTPase and NF-kappaB activation, and reduced the colocalizations of PI3-K and RhoA-GTPase with LRs. Biochemical characterization demonstrated the association of activated PI3-K with LR fractions which was inhibited by MbetaCD treatment. RhoA-GTPase activation was inhibited by PI3-K inhibitors, demonstrating that PI3-K is upstream to RhoA-GTPase. In addition, colocalization of Dia-2, a RhoA-GTPase activated molecule involved in MT activation, with LR was reduced. KSHV-RhoA-GTPase mediated acetylation and aggregation of MTs were also reduced. Taken together, these studies suggest that LRs of endothelial cells play critical roles in KSHV infection and gene expression, probably due to their roles in modulating KSHV-induced PI3-K, RhoA-GTPase, and Dia-2 molecules essential for postbinding and entry stages of infection such as modulation of microtubular dynamics, movement of virus in the cytoplasm, and nuclear delivery of viral DNA.  相似文献   

13.
Human herpesvirus 8 (HHV-8; also called Kaposi's sarcoma-associated herpesvirus), which is implicated in the pathogenesis of Kaposi's sarcoma (KS) and lymphoproliferative disorders, infects a variety of target cells both in vivo and in vitro. HHV-8 binds to several in vitro target cells via cell surface heparan sulfate and utilizes the alpha3beta1 integrin as one of its entry receptors. Interactions with cell surface molecules induce the activation of host cell signaling cascades and cytoskeletal changes (P. P. Naranatt, S. M. Akula, C. A. Zien, H. H. Krishnan, and B. Chandran, J. Virol. 77:1524-1539, 2003). However, the mechanism by which the HHV-8-induced signaling pathway facilitates the complex events associated with the internalization and nuclear trafficking of internalized viral DNA is as yet undefined. Here we examined the role of HHV-8-induced cytoskeletal dynamics in the infectious process and their interlinkage with signaling pathways. The depolymerization of microtubules did not affect HHV-8 binding and internalization, but it inhibited the nuclear delivery of viral DNA and infection. In contrast, the depolymerization of actin microfilaments did not have any effect on virus binding, entry, nuclear delivery, or infection. Early during infection, HHV-8 induced the acetylation of microtubules and the activation of the RhoA and Rac1 GTPases. The inactivation of Rho GTPases by Clostridium difficile toxin B significantly reduced microtubular acetylation and the delivery of viral DNA to the nucleus. In contrast, the activation of Rho GTPases by Escherichia coli cytotoxic necrotizing factor significantly augmented the nuclear delivery of viral DNA. Among the Rho GTPase-induced downstream effector molecules known to stabilize the microtubules, the activation of RhoA-GTP-dependent diaphanous 2 was observed, with no significant activation in the Rac- and Cdc42-dependent PAK1/2 and stathmin molecules. The nuclear delivery of viral DNA increased in cells expressing a constitutively active RhoA mutant and decreased in cells expressing a dominant-negative mutant of RhoA. HHV-8 capsids colocalized with the microtubules, as observed by confocal microscopic examination, and the colocalization was abolished by the destabilization of microtubules with nocodazole and by the phosphatidylinositol 3-kinase inhibitor affecting the Rho GTPases. These results suggest that HHV-8 induces Rho GTPases, and in doing so, modulates microtubules and promotes the trafficking of viral capsids and the establishment of infection. This is the first demonstration of virus-induced host cell signaling pathways in the modulation of microtubule dynamics and in the trafficking of viral DNA to the infected cell nucleus. These results further support our hypothesis that HHV-8 manipulates the host cell signaling pathway to create an appropriate intracellular environment that is conducive to the establishment of a successful infection.  相似文献   

14.
We have recently reported that osteopontin (OPN) stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase-type plasminogen activator (uPA) through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells (Das, R., Mahabeleshwar, G. H., and Kundu, G. C. (2003) J. Biol. Chem. 278, 28593-28606). However, the role(s) of OPN on AP-1-mediated uPA secretion and cell motility and the involvement of c-Src/epidermal growth factor receptor (EGFR) in these processes in breast cancer cells are not well defined. In this study we report that OPN induces alpha(v)beta(3) integrin-mediated c-Src kinase activity in both highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. Ligation of OPN with alpha(v)beta(3) integrin induces kinase activity and tyrosine phosphorylation of EGFR in MDA-MB-231 and wild type EGFR-transfected MCF-7 cells, and this was inhibited by the dominant negative form of c-Src (dn c-Src) indicating that c-Src kinase plays a crucial role in this process. OPN induces association between alpha(v)beta(3) integrin and EGFR on the cell membrane in a macromolecular form with c-Src. Furthermore, OPN induces alpha(v)beta(3) integrin/EGFR-mediated ERK1/2 phosphorylation and AP-1 activation. Moreover, dn c-Src also suppressed the OPN-induced phosphatidylinositol (PI) 3-kinase activity in these cells indicating that c-Src acts as master switch in regulating MEK/ERK1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways. OPN-induced ERK phosphorylation, AP-1 activation, uPA secretion, and cell motility were suppressed when cells were transfected with dn c-Src or pretreated with alpha(v)beta(3) integrin antibody, c-Src kinase inhibitor (pp2), EGFR tyrosine kinase inhibitor (PD153035), and MEK-1 inhibitor (PD98059). To our knowledge, this is the first report that OPN induces alpha(v)beta(3) integrin-mediated AP-1 activity and uPA secretion by activating c-Src/EGFR/ERK signaling pathways and further demonstrates a functional molecular link between OPN-induced integrin/c-Src-dependent EGFR phosphorylation and ERK/AP-1-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.  相似文献   

15.
Cells utilize dynamic interactions with the extracellular matrix to adapt to changing environmental conditions. Thrombospondin 1 (TSP1) induces focal adhesion disassembly and cell migration through a sequence (hep I) in its heparin-binding domain signaling through the calreticulin-low density lipoprotein receptor-related protein receptor complex. This involves the Galphai-dependent activation of ERK and phosphoinositide (PI) 3-kinase, both of which are required for focal adhesion disassembly. Focal adhesion kinase (FAK) regulates adhesion dynamics, acting in part by modulating RhoA activity, and FAK is implicated in ERK and PI 3-kinase activation. In this work, we sought to determine the role of FAK in TSP1-induced focal adhesion disassembly. TSP1/hep I does not stimulate focal adhesion disassembly in FAK knockout fibroblasts, whereas re-expressing FAK rescues responsiveness. Inhibiting FAK signaling through FRNK or FAK Y397F expression in endothelial cells also abrogates this response. TSP1/hep I stimulates a transient increase in FAK phosphorylation that requires calreticulin and Galphai, but not ERK or PI 3-kinase. Hep I does not activate ERK or PI 3-kinase in FAK knockout fibroblasts, suggesting activation occurs downstream of FAK. TSP1/hep I stimulates RhoA inactivation with kinetics corresponding to focal adhesion disassembly in a FAK, ERK, and PI 3-kinase-dependent manner. Furthermore, hep I does not stimulate focal adhesion disassembly in cells expressing constitutively active RhoA, suggesting that RhoA inactivation is required for this response. This is the first work to illustrate a connection between FAK phosphorylation in response to a soluble factor and RhoA inactivation, as well as the first report of PI 3-kinase and ERK in FAK regulation of RhoA activity.  相似文献   

16.
Dynamic regulation of beta(2) integrin-dependent adhesion is critical for a wide array of T cell functions. We previously showed that binding of high-affinity alpha(4)beta(1) integrins to VCAM-1 strengthens alpha(L)beta(2) integrin-mediated adhesion to ICAM-1. In this study, we compared beta(2) integrin-mediated adhesion of T cells to ICAM-1 under two different functional contexts: alpha(4) integrin signaling during emigration from blood into tissues and CD3 signaling during adhesion to APCs and target cells. Cross-linking either alpha(4) integrin or CD3 on Jurkat T cells induced adhesion to ICAM-1 of comparable strength. Adhesion was dependent on phosphatidylinositol (PI) 3-kinase but not p44/42 mitogen-activated protein kinase (extracellular regulated kinase 1/2), because it was inhibited by wortmannin and LY294002 but not U0126. These data suggest that PI 3-kinase is a ubiquitous regulator of beta(2) integrin-mediated adhesion. A distinct morphological change consisting of Jurkat cell spreading and extension of filopodia was induced by alpha(4) integrin signaling. In contrast, CD3 induced radial rings of cortical actin polymerization. Inhibitors of PI 3-kinase and extracellular regulated kinase 1/2 did not affect alpha(4) integrin-induced rearrangement of the actin cytoskeleton, but treatment with ionomycin, a Ca(2+) ionophore, modulated cell morphology by reducing filopodia and promoting lamellipodia formation. Qualitatively similar morphological and adhesive changes to those observed with Jurkat cells were observed following alpha(4) integrin or CD3 stimulation of human peripheral blood T cells.  相似文献   

17.
The alpha(v)beta(3) integrin has been shown to bind several ligands, including osteopontin and vitronectin. Its role in modulating cell migration and downstream signaling pathways in response to specific extracellular matrix ligands has been investigated in this study. Highly invasive prostate cancer PC3 cells that constitutively express alpha(v)beta(3) adhere and migrate on osteopontin and vitronectin in an alpha(v)beta(3)-dependent manner. However, exogenous expression of alpha(v)beta(3) in noninvasive prostate cancer LNCaP (beta(3)-LNCaP) cells mediates adhesion and migration on vitronectin but not on osteopontin. Activation of alpha(v)beta(3) by epidermal growth factor stimulation is required to mediate adhesion to osteopontin but is not sufficient to support migration on this substrate. We show that alpha(v)beta(3)-mediated cell migration requires activation of the phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (PKB/AKT) pathway since wortmannin, a PI 3-kinase inhibitor, prevents PC3 cell migration on both osteopontin and vitronectin; furthermore, alpha(v)beta(3) engagement by osteopontin and vitronectin activates the PI 3-kinase/AKT pathway. Migration of beta(3)-LNCaP cells on vitronectin also occurs through activation of the PI 3-kinase pathway; however, AKT phosphorylation is not increased upon engagement by osteopontin. Furthermore, phosphorylation of focal adhesion kinase (FAK), known to support cell migration in beta(3)-LNCaP cells, is detected on both substrates. Thus, in PC3 cells, alpha(v)beta(3) mediates cell migration and PI 3-kinase/AKT pathway activation on vitronectin and osteopontin; in beta(3)-LNCaP cells, alpha(v)beta(3) mediates cell migration and PI 3-kinase/AKT pathway activation on vitronectin, whereas adhesion to osteopontin does not support alpha(v)beta(3)-mediated cell migration and PI 3-kinase/AKT pathway activation. We conclude therefore that alpha(v)beta(3) exists in multiple functional states that can bind either selectively vitronectin or both vitronectin and osteopontin and that can differentially activate cell migration and intracellular signaling pathways in a ligand-specific manner.  相似文献   

18.
Vaccinia virus has a broad range of infectivity in many cell lines and animals. Although it is known that the vaccinia mature virus binds to cell surface glycosaminoglycans and extracellular matrix proteins, whether additional cellular receptors are required for virus entry remains unclear. Our previous studies showed that the vaccinia mature virus enters through lipid rafts, suggesting the involvement of raft-associated cellular proteins. Here we demonstrate that one lipid raft-associated protein, integrin β1, is important for vaccinia mature virus entry into HeLa cells. Vaccinia virus associates with integrin β1 in lipid rafts on the cell surface, and the knockdown of integrin β1 in HeLa cells reduces vaccinia mature virus entry. Additionally, vaccinia mature virus infection is reduced in a mouse cell line, GD25, that is deficient in integrin β1 expression. Vaccinia mature virus infection triggers the activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling, and the treatment of cells with inhibitors to block P13K activation reduces virus entry in an integrin β1-dependent manner, suggesting that integrin β1-mediates PI3K/Akt activation induced by vaccinia virus and that this signaling pathway is essential for virus endocytosis. The inhibition of integrin β1-mediated cell adhesion results in a reduction of vaccinia virus entry and the disruption of focal adhesion and PI3K/Akt activation. In summary, our results show that the binding of vaccinia mature virus to cells mimics the outside-in activation process of integrin functions to facilitate vaccinia virus entry into HeLa cells.  相似文献   

19.
Oncogenic signaling stimulates the dynamic remodeling of actin microfilaments and substrate adhesions, essential for cell spreading and motility. Transformation is associated with increased expression of beta1,6GlcNAc-branched N-glycans, products of Golgi beta1,6-acetylglucosaminyltransferase V (Mgat5) and the favored ligand for galectins. Herein we report that fibronectin fibrillogenesis and fibronectin-dependent cell spreading are deficient in Mgat5(-/-) mammary epithelial tumor cells and inhibited in Mgat5(+/+) cells by blocking Golgi N-glycan processing with swainsonine or by competitive inhibition of galectin binding. At an optimum dosage, exogenous galectin-3 added to Mgat5(+/+) cells activates focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3K), recruits conformationally active alpha5beta1-integrin to fibrillar adhesions, and increases F-actin turnover. RGD peptide inhibits PI3K-dependent fibronectin matrix remodeling and fibronectin-dependent cell motility, while galectin-3 stimulates and overrides the inhibitory effects of RGD. Antibodies to the galectin-3 N-terminal oligomerization domain stimulate alpha5beta1 activation and recruitment to fibrillar adhesions in Mgat5(+/+) cells, an effect that is blocked by disrupting galectin-glycan binding. Our results demonstrate that fibronectin polymerization and tumor cell motility are regulated by galectin-3 binding to branched N-glycan ligands that stimulate focal adhesion remodeling, FAK and PI3K activation, local F-actin instability, and alpha5beta1 translocation to fibrillar adhesions.  相似文献   

20.
Stretch-induced expression of vascular endothelial growth factor (VEGF) is thought to be important in mediating the exacerbation of diabetic retinopathy by systemic hypertension. However, the mechanisms underlying stretch-induced VEGF expression are not fully understood. We present novel findings demonstrating that stretch-induced VEGF expression in retinal capillary pericytes is mediated by phosphatidylinositol (PI) 3-kinase and protein kinase C (PKC)-zeta but is not mediated by ERK1/2, classical/novel isoforms of PKC, Akt, or Ras despite their activation by stretch. Cardiac profile cyclic stretch at 60 cpm increased VEGF mRNA expression in a time- and magnitude-dependent manner without altering mRNA stability. Stretch increased ERK1/2 phosphorylation, PI 3-kinase activity, Akt phosphorylation, and PKC-zeta activity. Signaling pathways were explored using inhibitors of PKC, MEK1/2, and PI 3-kinase; adenovirus-mediated overexpression of ERK, PKC-alpha, PKC-delta, PKC-zeta, and Akt; and dominant negative (DN) mutants of ERK, PKC-zeta, Ras, PI 3-kinase and Akt. Although stretch activated ERK1/2 through a Ras- and PKC classical/novel isoform-dependent pathway, these pathways were not responsible for stretch-induced VEGF expression. Overexpression of DN ERK and Ras had no effect on VEGF expression in these cells. In contrast, DN PI 3-kinase as well as pharmacologic inhibitors of PI 3-kinase blocked stretch-induced VEGF expression. Although stretch-induced PI 3-kinase activation increased both Akt phosphorylation and activity of PKC-zeta, VEGF expression was dependent on PKC-zeta but not Akt. In addition, PKC-zeta did not mediate stretch-induced ERK1/2 activation. These results suggest that stretch-induced expression of VEGF involves a novel mechanism dependent upon PI 3-kinase-mediated activation of PKC-zeta that is independent of stretch-induced activation of ERK1/2, classical/novel PKC isoforms, Ras, or Akt. This mechanism may play a role in the well documented association of concomitant hypertension with clinical exacerbation of neovascularization and vascular permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号